Example #1
0
def getDenseNet(num_classes, ctx):
    densenet = vision.densenet201(pretrained=True, ctx=ctx)

    net = vision.densenet201(classes=num_classes, prefix='densenet0_')
    with net.name_scope():
        net.output = nn.Dense(num_classes, flatten=True)
        net.output.collect_params().initialize(mx.init.Xavier(
            rnd_type='gaussian', factor_type="in", magnitude=2),
                                               ctx=ctx)
        net.features = densenet.features

    net.collect_params().reset_ctx(ctx)

    inputs = mx.sym.var('data')
    out = net(inputs)
    internals = out.get_internals()
    outputs = [
        internals['densenet0_conv3_fwd_output'],
        internals['densenet0_stage4_concat15_output'],
        internals['densenet0_dense1_fwd_output']
    ]
    feat_model = gluon.SymbolBlock(outputs,
                                   inputs,
                                   params=net.collect_params())
    feat_model._prefix = 'densenet0_'

    return feat_model
Example #2
0
def load_model():
    print("we're loading densenet model: \
        https://modelzoo.co/model/densely-connected-convolutional-networks-2")
    densenetX = vision.densenet201(pretrained=True)
    print("we just loaded: ")
    type(densenetX)
    return densenetX
def load_model():
    print("we're loading densenet model: \
        https://modelzoo.co/model/densely-connected-convolutional-networks-2")
    densenetX = vision.densenet201(pretrained=True)
    print("we just loaded: ")
    type(densenetX)
    print("Now we're loading YOLO")
    yolo_netX = model_zoo.get_model('yolo3_darknet53_voc', pretrained=True)
    type(yolo_netX)
    return densenetX, yolo_netX
Example #4
0
def densenet201mxnetload():
    net = vision.densenet201(pretrained=True)
    net.hybridize()
    return net
from mxnet.gluon import nn

from mxnet.gluon.model_zoo import vision as models
dense_net=models.densenet201(pretrained=False,prefix="a_")

net=nn.HybridSequential(prefix="a_")
for layer in dense_net.features[0:13]:
   net.add(layer) 

class output_block(nn.HybridBlock):
    def __init__(self,**kwargs):
        super (output_block,self).__init__(**kwargs)
        with self.name_scope():
            self.dense1=nn.Dense(256,activation='relu')
            self.globalavg=nn.GlobalAvgPool2D()   
            self.dense2=nn.Dense(1)
    def hybrid_forward(self,F,x):
        out=self.globalavg(x)
        out=self.dense1(out)
        out=self.dense2(out)
        return out
    
output=output_block(prefix="a_")
with net.name_scope():
    net.add(output)
Example #6
0
                out = net(data.as_in_context(mx.gpu()))
                print(out.shape)
                out = out.reshape(
                    (30720))  # dense169 6656 dense201 7890  //122880
                out = out.as_in_context(mx.cpu())
                out = out.asnumpy()
                res = ''
                for item in out:
                    res += str(item) + ' '
                #print(res)
                fw1.write(res + '\n')
                label = root.strip().split('\\')[-1]
                fw2.write(label + '\n')
                print(label)
    fw1.close()
    fw2.close()
    print('net done!!!')


pretrained_net = models.densenet201(pretrained=True)
net = nn.HybridSequential()
for layer in pretrained_net.features:
    net.add(layer)
#print(net)
ctx = mx.gpu()
net.collect_params().reset_ctx(ctx)
net.hybridize()
dir = '../data/dense1920'
suffix = ['jpg']
batch_net(dir, suffix, net)