Example #1
0
    def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2):
        super(GhostNet, self).__init__()
        # setting of inverted residual blocks
        self.cfgs = cfgs
        self.dropout = dropout

        # building first layer
        output_channel = _make_divisible(16 * width, 4)
        self.conv_stem = nn.Conv2D(output_channel,
                                   in_channels=3,
                                   kernel_size=3,
                                   strides=2,
                                   padding=1,
                                   use_bias=False)
        self.bn1 = nn.BatchNorm(in_channels=output_channel, momentum=0.1)
        self.act1 = nn.Activation('relu')
        input_channel = output_channel

        # building inverted residual blocks
        stages = []
        block = GhostBottleneck
        for cfg in self.cfgs:
            layers = []
            for k, exp_size, c, se_ratio, s in cfg:
                output_channel = _make_divisible(c * width, 4)
                hidden_channel = _make_divisible(exp_size * width, 4)
                layers.append(
                    block(input_channel,
                          hidden_channel,
                          output_channel,
                          k,
                          s,
                          se_ratio=se_ratio))
                input_channel = output_channel
            with self.name_scope():
                stage = nn.HybridSequential()
            for i in range(len(layers)):
                stage.add(layers[i])
            stages.append(stage)

        output_channel = _make_divisible(exp_size * width, 4)
        with self.name_scope():
            convbnrelu = nn.HybridSequential()
            convbnrelu.add(ConvBnAct(input_channel, output_channel, 1))
        stages.append(convbnrelu)
        input_channel = output_channel

        with self.name_scope():
            self.blocks = nn.HybridSequential()
            for i in range(len(stages)):
                self.blocks.add(stages[i])

        # building last several layers
        output_channel = 1280
        self.global_pool = nn.GlobalAvgPool2D()
        self.conv_head = nn.Conv2D(output_channel,
                                   in_channels=input_channel,
                                   kernel_size=1,
                                   strides=1,
                                   padding=0,
                                   use_bias=True)
        self.act2 = nn.Activation('relu')
        self.classifier = nn.Dense(num_classes, in_units=output_channel)
Example #2
0
 def __init__(self, block, layers, classes=1000, dilated=False, norm_layer=BatchNorm, activation_type='relu',
              norm_kwargs=None, last_gamma=False, deep_stem=False, stem_width=32,
              avg_down=False, final_drop=0.0, use_global_stats=False,
              name_prefix='', **kwargs):
     self.inplanes = stem_width*2 if deep_stem else 64
     super(ResNetV1b, self).__init__(prefix=name_prefix)
     norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
     if use_global_stats:
         norm_kwargs['use_global_stats'] = True
     self.norm_kwargs = norm_kwargs
     with self.name_scope():
         if not deep_stem:
             self.conv1 = nn.Conv2D(channels=64, kernel_size=7, strides=2,
                                    padding=3, use_bias=False)
         else:
             self.conv1 = nn.HybridSequential(prefix='conv1')
             self.conv1.add(nn.Conv2D(channels=stem_width, kernel_size=3, strides=2,
                                      padding=1, use_bias=False))
             self.conv1.add(norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
             if activation_type == 'prelu':
                 self.conv1.add(nn.PReLU())
             else:
                 self.conv1.add(nn.Activation(activation_type))
             self.conv1.add(nn.Conv2D(channels=stem_width, kernel_size=3, strides=1,
                                      padding=1, use_bias=False))
             self.conv1.add(norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
             if activation_type == 'prelu':
                 self.conv1.add(nn.PReLU())
             else:
                 self.conv1.add(nn.Activation(activation_type))
             self.conv1.add(nn.Conv2D(channels=stem_width*2, kernel_size=3, strides=1,
                                      padding=1, use_bias=False))
         self.bn1 = norm_layer(**({} if norm_kwargs is None else norm_kwargs))
         if activation_type == 'prelu':
             self.relu = nn.PReLU()
         else:
             self.relu = nn.Activation(activation_type)
         self.maxpool = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
         self.layer1 = self._make_layer(1, block, 64, layers[0], avg_down=avg_down,
                                        norm_layer=norm_layer, last_gamma=last_gamma)
         self.layer2 = self._make_layer(2, block, 128, layers[1], strides=2, avg_down=avg_down,
                                        norm_layer=norm_layer, last_gamma=last_gamma)
         if dilated:
             self.layer3 = self._make_layer(3, block, 256, layers[2], strides=1, dilation=2,
                                            avg_down=avg_down, norm_layer=norm_layer,
                                            last_gamma=last_gamma)
             self.layer4 = self._make_layer(4, block, 512, layers[3], strides=1, dilation=4,
                                            avg_down=avg_down, norm_layer=norm_layer,
                                            last_gamma=last_gamma)
         else:
             self.layer3 = self._make_layer(3, block, 256, layers[2], strides=2,
                                            avg_down=avg_down, norm_layer=norm_layer,
                                            last_gamma=last_gamma)
             self.layer4 = self._make_layer(4, block, 512, layers[3], strides=2,
                                            avg_down=avg_down, norm_layer=norm_layer,
                                            last_gamma=last_gamma)
         self.avgpool = nn.GlobalAvgPool2D()
         self.flat = nn.Flatten()
         self.drop = None
         if final_drop > 0.0:
             self.drop = nn.Dropout(final_drop)
         self.fc = nn.Dense(in_units=512 * block.expansion, units=classes)
Example #3
0
 def __init__(self, nbase, **kwargs):
     super(make_style, self).__init__(**kwargs)
     with self.name_scope():
         self.pool_all = nn.GlobalAvgPool2D()
    def __init__(self,
                 block,
                 layers,
                 channels,
                 classes=1000,
                 thumbnail=True,
                 norm_layer=BatchNorm,
                 norm_kwargs=None,
                 **kwargs):
        super(MobileFace_AttributeV1, self).__init__(**kwargs)
        assert len(layers) == len(channels) - 1
        with self.name_scope():
            self.features = nn.HybridSequential(prefix='')
            self.features.add(
                norm_layer(scale=False,
                           center=False,
                           **({} if norm_kwargs is None else norm_kwargs)))
            if thumbnail:
                self.features.add(_conv3x3(channels[0], 1, 0))
            else:
                self.features.add(
                    nn.Conv2D(channels[0], 7, 2, 3, use_bias=False))
                self.features.add(
                    norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
                self.features.add(nn.Activation('relu'))
                self.features.add(nn.MaxPool2D(3, 2, 1))

            in_channels = channels[0]
            for i, num_layer in enumerate(layers):
                # stride = 1 if i == 0 else 2
                stride = 2
                self.features.add(
                    self._make_layer(block,
                                     num_layer,
                                     channels[i + 1],
                                     stride,
                                     i + 1,
                                     in_channels=in_channels,
                                     norm_layer=norm_layer,
                                     norm_kwargs=norm_kwargs))
                in_channels = channels[i + 1]

            self.features.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.features.add(nn.Activation('relu'))

            self.branch1 = nn.HybridSequential(prefix='')
            self.branch1.add(nn.Conv2D(64, 1, 1, 0, use_bias=False))
            self.branch1.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch1.add(nn.Activation('relu'))
            self.branch1.add(nn.Conv2D(128, 3, 1, 1, use_bias=False))
            self.branch1.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch1.add(nn.Activation('relu'))
            self.branch1.add(nn.Conv2D(64, 1, 1, 0, use_bias=False))
            self.branch1.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch1.add(nn.Activation('relu'))
            self.branch1.add(nn.Conv2D(128, 3, 1, 1, use_bias=False))
            self.branch1.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch1.add(nn.Activation('relu'))
            self.branch1.add(nn.GlobalAvgPool2D())
            self.branch1.add(nn.Flatten())
            self.output1 = nn.Dense(2, in_units=128)

            self.branch2 = nn.HybridSequential(prefix='')
            self.branch2.add(nn.Conv2D(128, 1, 1, 0, use_bias=False))
            self.branch2.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch2.add(nn.Activation('relu'))
            self.branch2.add(nn.Conv2D(256, 3, 1, 1, use_bias=False))
            self.branch2.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch2.add(nn.Activation('relu'))
            self.branch2.add(nn.Conv2D(128, 1, 1, 0, use_bias=False))
            self.branch2.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch2.add(nn.Activation('relu'))
            self.branch2.add(nn.Conv2D(256, 3, 1, 1, use_bias=False))
            self.branch2.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch2.add(nn.Activation('relu'))
            self.branch2.add(nn.GlobalAvgPool2D())
            self.branch2.add(nn.Flatten())
            self.output2 = nn.Dense(6, in_units=256)

            self.branch3 = nn.HybridSequential(prefix='')
            self.branch3.add(nn.Conv2D(128, 1, 1, 0, use_bias=False))
            self.branch3.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch3.add(nn.Activation('relu'))
            self.branch3.add(nn.Conv2D(256, 3, 1, 1, use_bias=False))
            self.branch3.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch3.add(nn.Activation('relu'))
            self.branch3.add(nn.Conv2D(128, 1, 1, 0, use_bias=False))
            self.branch3.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch3.add(nn.Activation('relu'))
            self.branch3.add(nn.Conv2D(256, 3, 1, 1, use_bias=False))
            self.branch3.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.branch3.add(nn.Activation('relu'))
            self.branch3.add(nn.GlobalAvgPool2D())
            self.branch3.add(nn.Flatten())
            self.output3 = nn.Dense(8, in_units=256)
Example #5
0
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b3 = nn.Sequential()
b3.add(Inception(64, (96, 128), (16, 32), 32),
       Inception(128, (128, 192), (32, 96), 64),
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b4 = nn.Sequential()
b4.add(Inception(192, (96, 208), (16, 48), 64),
       Inception(160, (112, 224), (24, 64), 64),
       Inception(128, (128, 256), (24, 64), 64),
       Inception(112, (144, 288), (32, 64), 64),
       Inception(256, (160, 320), (32, 128), 128),
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))

b5 = nn.Sequential()
b5.add(Inception(256, (160, 320), (32, 128), 128),
       Inception(384, (192, 384), (48, 128), 128), nn.GlobalAvgPool2D())

net = nn.Sequential()
net.add(b1, b2, b3, b4, b5, nn.Dense(10))

X = nd.random.uniform(shape=(1, 1, 96, 96))
net.initialize()
for layer in net:
    X = layer(X)
    print(layer.name, 'output shape:\t', X.shape)

#5.9.3-获取数据和训练模型
print('train...')
lr, num_epochs, batch_size, ctx = 0.1, 5, 50, d2l.try_gpu()
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
Example #6
0
    def __init__(self,
                 channels,
                 init_block_channels,
                 final_block_channels,
                 kernel_sizes,
                 strides_per_stage,
                 expansion_factors,
                 dropout_rate=0.2,
                 tf_mode=False,
                 bn_epsilon=1e-5,
                 bn_use_global_stats=False,
                 in_channels=3,
                 in_size=(224, 224),
                 classes=1000,
                 **kwargs):
        super(EfficientNet, self).__init__(**kwargs)
        self.in_size = in_size
        self.classes = classes
        activation = "swish"

        with self.name_scope():
            self.features = nn.HybridSequential(prefix="")
            self.features.add(
                EffiInitBlock(in_channels=in_channels,
                              out_channels=init_block_channels,
                              bn_epsilon=bn_epsilon,
                              bn_use_global_stats=bn_use_global_stats,
                              activation=activation,
                              tf_mode=tf_mode))
            in_channels = init_block_channels
            for i, channels_per_stage in enumerate(channels):
                kernel_sizes_per_stage = kernel_sizes[i]
                expansion_factors_per_stage = expansion_factors[i]
                stage = nn.HybridSequential(prefix="stage{}_".format(i + 1))
                with stage.name_scope():
                    for j, out_channels in enumerate(channels_per_stage):
                        kernel_size = kernel_sizes_per_stage[j]
                        expansion_factor = expansion_factors_per_stage[j]
                        strides = strides_per_stage[i] if (j == 0) else 1
                        if i == 0:
                            stage.add(
                                EffiDwsConvUnit(
                                    in_channels=in_channels,
                                    out_channels=out_channels,
                                    strides=strides,
                                    bn_epsilon=bn_epsilon,
                                    bn_use_global_stats=bn_use_global_stats,
                                    activation=activation,
                                    tf_mode=tf_mode))
                        else:
                            stage.add(
                                EffiInvResUnit(
                                    in_channels=in_channels,
                                    out_channels=out_channels,
                                    kernel_size=kernel_size,
                                    strides=strides,
                                    exp_factor=expansion_factor,
                                    se_factor=4,
                                    bn_epsilon=bn_epsilon,
                                    bn_use_global_stats=bn_use_global_stats,
                                    activation=activation,
                                    tf_mode=tf_mode))
                        in_channels = out_channels
                self.features.add(stage)
            self.features.add(
                conv1x1_block(in_channels=in_channels,
                              out_channels=final_block_channels,
                              bn_epsilon=bn_epsilon,
                              bn_use_global_stats=bn_use_global_stats,
                              activation=activation))
            in_channels = final_block_channels
            self.features.add(nn.GlobalAvgPool2D())

            self.output = nn.HybridSequential(prefix="")
            self.output.add(nn.Flatten())
            if dropout_rate > 0.0:
                self.output.add(nn.Dropout(rate=dropout_rate))
            self.output.add(nn.Dense(units=classes, in_units=in_channels))
Example #7
0
    def __init__(self,
                 num_classes=1000,
                 width_mult=1.0,
                 mode='small',
                 **kwargs):
        super(MobilenetV3, self).__init__(**kwargs)
        input_channel = 16
        last_channel = 1280
        if mode == 'large':
            # refer to Table 1 in paper
            mobile_setting = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, False, 'RE', 1],
                [3, 64, 24, False, 'RE', 2],
                [3, 72, 24, False, 'RE', 1],
                [5, 72, 40, True, 'RE', 2],
                [5, 120, 40, True, 'RE', 1],
                [5, 120, 40, True, 'RE', 1],
                [3, 240, 80, False, 'HS', 2],
                [3, 200, 80, False, 'HS', 1],
                [3, 184, 80, False, 'HS', 1],
                [3, 184, 80, False, 'HS', 1],
                [3, 480, 112, True, 'HS', 1],
                [3, 672, 112, True, 'HS', 1],
                [5, 672, 112, True, 'HS',
                 1],  # c = 112, paper set it to 160 by error
                [5, 672, 160, True, 'HS', 2],
                [5, 960, 160, True, 'HS', 1],
            ]
        elif mode == 'small':
            # refer to Table 2 in paper
            mobile_setting = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, True, 'RE', 2],
                [3, 72, 24, False, 'RE', 2],
                [3, 88, 24, False, 'RE', 1],
                [5, 96, 40, True, 'HS',
                 2],  # stride = 2, paper set it to 1 by error
                [5, 240, 40, True, 'HS', 1],
                [5, 240, 40, True, 'HS', 1],
                [5, 120, 48, True, 'HS', 1],
                [5, 144, 48, True, 'HS', 1],
                [5, 288, 96, True, 'HS', 2],
                [5, 576, 96, True, 'HS', 1],
                [5, 576, 96, True, 'HS', 1],
            ]
        else:
            raise NotImplementedError

        # building first layer
        self.last_channel = make_divisible(
            last_channel * width_mult) if width_mult > 1.0 else last_channel

        with self.name_scope():
            self.features = nn.HybridSequential()
            with self.features.name_scope():
                self.features.add(
                    ConvBlock(input_channel, 3, 1, nlin_layer=HSwish()))

                # building mobile blocks
                for k, exp, c, se, nl, s in mobile_setting:
                    output_channel = make_divisible(c * width_mult)
                    exp_channel = make_divisible(exp * width_mult)
                    self.features.add(
                        MobileBottleneck(input_channel, output_channel, k, s,
                                         exp_channel, se, nl))
                    input_channel = output_channel

                if mode == 'large':
                    last_conv = make_divisible(960 * width_mult)
                    self.features.add(
                        ConvBlock(last_conv, 1, 1, nlin_layer=HSwish()))
                elif mode == 'small':
                    last_conv = make_divisible(576 * width_mult)
                    self.features.add(
                        ConvBlock(last_conv, 1, 1, nlin_layer=HSwish()))
                    self.features.add(
                        SEModule(last_conv))  # refer to paper Table2
                else:
                    raise NotImplementedError

            self.output = nn.HybridSequential()
            with self.output.name_scope():
                # building last several layers
                if mode == 'large':
                    self.output.add(
                        nn.GlobalAvgPool2D(), HSwish(),
                        nn.Conv2D(last_channel, 1, padding=0, use_bias=False),
                        HSwish(),
                        nn.Conv2D(num_classes, 1, padding=0, use_bias=False))
                elif mode == 'small':
                    self.output.add(
                        nn.GlobalAvgPool2D(), HSwish(),
                        ConvBlock(last_channel, 1, 1, nlin_layer=HSwish()),
                        ConvBlock(num_classes, 1, 1, nlin_layer=HSwish()))
                else:
                    raise NotImplementedError
Example #8
0
    def __init__(self,
                 input_size=224,
                 n_class=1000,
                 architecture=None,
                 channel_scales=None,
                 use_all_blocks=False,
                 bn=nn.BatchNorm,
                 use_se=False,
                 last_conv_after_pooling=False):
        """
        scale_cand_ids = [6, 5, 3, 5, 2, 6, 3, 4, 2, 5, 7, 5, 4, 6, 7, 4, 4, 5, 4, 3]
        scale_candidate_list = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0]
        stage_repeats = [4, 4, 8, 4]
        len(scale_cand_ids) == sum(stage_repeats) == # feature blocks == 20
        """
        super(ShuffleNasOneShot, self).__init__()
        # Predefined
        self.stage_repeats = [4, 4, 8, 4]
        self.stage_out_channels = [64, 160, 320, 640]
        self.candidate_scales = [
            0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
        ]
        self.use_all_blocks = use_all_blocks
        self.use_se = use_se

        first_conv_out_channel = 16
        last_conv_out_channel = 1024
        self.last_conv_after_pooling = last_conv_after_pooling

        if architecture is None and channel_scales is None:
            fix_arch = False
        elif architecture is not None and channel_scales is not None:
            fix_arch = True
            assert len(architecture) == len(channel_scales)
        else:
            raise ValueError(
                "architecture and scale_ids should be both None or not None.")
        self.fix_arch = fix_arch

        assert input_size % 32 == 0
        assert len(self.stage_repeats) == len(self.stage_out_channels)

        with self.name_scope():
            self.features = nn.HybridSequential(
            ) if fix_arch else NasHybridSequential(prefix='features_')
            with self.features.name_scope():
                # first conv
                self.features.add(
                    nn.Conv2D(first_conv_out_channel,
                              in_channels=3,
                              kernel_size=3,
                              strides=2,
                              padding=1,
                              use_bias=False,
                              prefix='first_conv_'), bn(momentum=0.1),
                    Activation('hard_swish' if self.use_se else 'relu'))

                # features
                input_channel = 16
                block_id = 0
                for stage_id in range(len(self.stage_repeats)):
                    numrepeat = self.stage_repeats[stage_id]
                    output_channel = self.stage_out_channels[stage_id]

                    if self.use_se:
                        act_name = 'hard_swish' if stage_id >= 1 else 'relu'
                        block_use_se = True if stage_id >= 2 else False
                    else:
                        act_name = 'relu'
                        block_use_se = False
                    # create repeated blocks for current stage
                    for i in range(numrepeat):
                        stride = 2 if i == 0 else 1
                        # TODO: update SE and Activation in ShuffleNetBlock and ShuffleNasBlock
                        if fix_arch:
                            block_choice = architecture[block_id]
                            mid_channel = int(output_channel // 2 *
                                              channel_scales[block_id])
                            # print("Mid channel: {}".format(mid_channel))
                            block_id += 1
                            if block_choice == 0:
                                self.features.add(
                                    ShuffleNetBlock(input_channel,
                                                    output_channel,
                                                    mid_channel,
                                                    bn=bn,
                                                    block_mode='ShuffleNetV2',
                                                    ksize=3,
                                                    stride=stride,
                                                    use_se=block_use_se,
                                                    act_name=act_name))
                            elif block_choice == 1:
                                self.features.add(
                                    ShuffleNetBlock(input_channel,
                                                    output_channel,
                                                    mid_channel,
                                                    bn=bn,
                                                    block_mode='ShuffleNetV2',
                                                    ksize=5,
                                                    stride=stride,
                                                    use_se=block_use_se,
                                                    act_name=act_name))
                            elif block_choice == 2:
                                self.features.add(
                                    ShuffleNetBlock(input_channel,
                                                    output_channel,
                                                    mid_channel,
                                                    bn=bn,
                                                    block_mode='ShuffleNetV2',
                                                    ksize=7,
                                                    stride=stride,
                                                    use_se=block_use_se,
                                                    act_name=act_name))
                            elif block_choice == 3:
                                self.features.add(
                                    ShuffleNetBlock(
                                        input_channel,
                                        output_channel,
                                        mid_channel,
                                        bn=bn,
                                        block_mode='ShuffleXception',
                                        ksize=3,
                                        stride=stride,
                                        use_se=block_use_se,
                                        act_name=act_name))
                            else:
                                raise NotImplementedError
                        else:
                            block_id += 1
                            self.features.add(
                                ShuffleNasBlock(
                                    input_channel,
                                    output_channel,
                                    stride=stride,
                                    bn=bn,
                                    max_channel_scale=self.
                                    candidate_scales[-1],
                                    use_all_blocks=self.use_all_blocks,
                                    use_se=block_use_se,
                                    act_name=act_name))
                        # update input_channel for next block
                        input_channel = output_channel
                assert block_id == sum(self.stage_repeats)

                # last conv
                if self.last_conv_after_pooling:
                    # MobileNet V3 approach
                    self.features.add(
                        nn.GlobalAvgPool2D(),
                        # no last SE for MobileNet V3 style
                        nn.Conv2D(last_conv_out_channel,
                                  in_channels=input_channel,
                                  kernel_size=1,
                                  strides=1,
                                  padding=0,
                                  use_bias=True,
                                  prefix='conv_fc_'),
                        # No bn for the conv after pooling
                        Activation('hard_swish' if self.use_se else 'relu'))
                else:
                    if self.use_se:
                        # ShuffleNetV2+ approach
                        self.features.add(
                            nn.Conv2D(last_conv_out_channel,
                                      in_channels=input_channel,
                                      kernel_size=1,
                                      strides=1,
                                      padding=0,
                                      use_bias=False,
                                      prefix='last_conv_'),
                            bn(momentum=0.1),
                            Activation(
                                'hard_swish' if self.use_se else 'relu'),
                            nn.GlobalAvgPool2D(),
                            SE(last_conv_out_channel),
                            nn.Conv2D(last_conv_out_channel,
                                      in_channels=last_conv_out_channel,
                                      kernel_size=1,
                                      strides=1,
                                      padding=0,
                                      use_bias=True,
                                      prefix='conv_fc_'),
                            # No bn for the conv after pooling
                            Activation('hard_swish' if self.use_se else 'relu'
                                       ))
                    else:
                        # original Oneshot Nas approach
                        self.features.add(
                            nn.Conv2D(last_conv_out_channel,
                                      in_channels=input_channel,
                                      kernel_size=1,
                                      strides=1,
                                      padding=0,
                                      use_bias=False,
                                      prefix='last_conv_'), bn(momentum=0.1),
                            Activation(
                                'hard_swish' if self.use_se else 'relu'),
                            nn.GlobalAvgPool2D())

                # Dropout ratio follows ShuffleNetV2+ for se
                self.features.add(nn.Dropout(0.2 if self.use_se else 0.1))
            self.output = nn.HybridSequential(prefix='output_')
            with self.output.name_scope():
                self.output.add(
                    nn.Conv2D(n_class,
                              in_channels=last_conv_out_channel,
                              kernel_size=1,
                              strides=1,
                              padding=0,
                              use_bias=True), nn.Flatten())
Example #9
0
    def __init__(self,
                 block,
                 layers,
                 cardinality=1,
                 bottleneck_width=64,
                 classes=1000,
                 dilated=False,
                 dilation=1,
                 norm_layer=BatchNorm,
                 norm_kwargs=None,
                 last_gamma=False,
                 deep_stem=False,
                 stem_width=32,
                 avg_down=False,
                 final_drop=0.0,
                 use_global_stats=False,
                 name_prefix='',
                 dropblock_prob=0,
                 input_size=224,
                 use_splat=False,
                 radix=2,
                 avd=False,
                 avd_first=False,
                 split_drop_ratio=0,
                 **kwargs):
        self.cardinality = cardinality
        self.bottleneck_width = bottleneck_width
        self.inplanes = stem_width * 2 if deep_stem else 64
        self.radix = radix
        self.split_drop_ratio = split_drop_ratio
        self.avd_first = avd_first
        super(ResNet, self).__init__(prefix=name_prefix)
        norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
        if use_global_stats:
            norm_kwargs['use_global_stats'] = True
        self.norm_kwargs = norm_kwargs

        self.face_recog = kwargs.get('face_recog', False)

        first_stride = 2 if (input_size == 224) else 1
        self.act_type = kwargs.get('act_type', 'prelu')
        with self.name_scope():
            if not deep_stem:
                self.conv1 = nn.Conv2D(channels=64,
                                       kernel_size=7,
                                       strides=first_stride,
                                       padding=3,
                                       use_bias=False,
                                       in_channels=3)
            else:
                self.conv1 = nn.HybridSequential(prefix='conv1')
                self.conv1.add(
                    nn.Conv2D(channels=stem_width,
                              kernel_size=3,
                              strides=first_stride,
                              padding=1,
                              use_bias=False,
                              in_channels=3))
                self.conv1.add(
                    norm_layer(in_channels=stem_width, **norm_kwargs))
                self.conv1.add(
                    nn.Activation(self.act_type)
                    if self.act_type != 'prelu' else nn.PReLU())
                self.conv1.add(
                    nn.Conv2D(channels=stem_width,
                              kernel_size=3,
                              strides=1,
                              padding=1,
                              use_bias=False,
                              in_channels=stem_width))
                self.conv1.add(
                    norm_layer(in_channels=stem_width, **norm_kwargs))
                self.conv1.add(
                    nn.Activation(self.act_type)
                    if self.act_type != 'prelu' else nn.PReLU())
                self.conv1.add(
                    nn.Conv2D(channels=stem_width * 2,
                              kernel_size=3,
                              strides=1,
                              padding=1,
                              use_bias=False,
                              in_channels=stem_width))
            input_size = _update_input_size(input_size, first_stride)
            self.bn1 = norm_layer(
                in_channels=64 if not deep_stem else stem_width * 2,
                **norm_kwargs)
            if self.act_type == 'prelu':
                self.relu = nn.PReLU()
            else:
                self.relu = nn.Activation(self.act_type)
            self.maxpool = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
            input_size = _update_input_size(input_size, 2)
            self.layer1 = self._make_layer(1,
                                           block,
                                           64,
                                           layers[0],
                                           avg_down=avg_down,
                                           norm_layer=norm_layer,
                                           last_gamma=last_gamma,
                                           use_splat=use_splat,
                                           avd=avd)
            self.layer2 = self._make_layer(2,
                                           block,
                                           128,
                                           layers[1],
                                           strides=2,
                                           avg_down=avg_down,
                                           norm_layer=norm_layer,
                                           last_gamma=last_gamma,
                                           use_splat=use_splat,
                                           avd=avd)
            input_size = _update_input_size(input_size, 2)
            if dilated or dilation == 4:
                self.layer3 = self._make_layer(3,
                                               block,
                                               256,
                                               layers[2],
                                               strides=1,
                                               dilation=2,
                                               avg_down=avg_down,
                                               norm_layer=norm_layer,
                                               last_gamma=last_gamma,
                                               dropblock_prob=dropblock_prob,
                                               input_size=input_size,
                                               use_splat=use_splat,
                                               avd=avd)
                self.layer4 = self._make_layer(4,
                                               block,
                                               512,
                                               layers[3],
                                               strides=1,
                                               dilation=4,
                                               pre_dilation=2,
                                               avg_down=avg_down,
                                               norm_layer=norm_layer,
                                               last_gamma=last_gamma,
                                               dropblock_prob=dropblock_prob,
                                               input_size=input_size,
                                               use_splat=use_splat,
                                               avd=avd)
            elif dilation == 3:
                # special
                self.layer3 = self._make_layer(3,
                                               block,
                                               256,
                                               layers[2],
                                               strides=1,
                                               dilation=2,
                                               avg_down=avg_down,
                                               norm_layer=norm_layer,
                                               last_gamma=last_gamma,
                                               dropblock_prob=dropblock_prob,
                                               input_size=input_size,
                                               use_splat=use_splat,
                                               avd=avd)
                self.layer4 = self._make_layer(4,
                                               block,
                                               512,
                                               layers[3],
                                               strides=2,
                                               dilation=2,
                                               pre_dilation=2,
                                               avg_down=avg_down,
                                               norm_layer=norm_layer,
                                               last_gamma=last_gamma,
                                               dropblock_prob=dropblock_prob,
                                               input_size=input_size,
                                               use_splat=use_splat,
                                               avd=avd)
            elif dilation == 2:
                self.layer3 = self._make_layer(3,
                                               block,
                                               256,
                                               layers[2],
                                               strides=2,
                                               avg_down=avg_down,
                                               norm_layer=norm_layer,
                                               last_gamma=last_gamma,
                                               dropblock_prob=dropblock_prob,
                                               input_size=input_size,
                                               use_splat=use_splat,
                                               avd=avd)
                self.layer4 = self._make_layer(4,
                                               block,
                                               512,
                                               layers[3],
                                               strides=1,
                                               dilation=2,
                                               avg_down=avg_down,
                                               norm_layer=norm_layer,
                                               last_gamma=last_gamma,
                                               dropblock_prob=dropblock_prob,
                                               input_size=input_size,
                                               use_splat=use_splat,
                                               avd=avd)
            else:
                self.layer3 = self._make_layer(3,
                                               block,
                                               256,
                                               layers[2],
                                               strides=2,
                                               avg_down=avg_down,
                                               norm_layer=norm_layer,
                                               last_gamma=last_gamma,
                                               dropblock_prob=dropblock_prob,
                                               input_size=input_size,
                                               use_splat=use_splat,
                                               avd=avd)
                input_size = _update_input_size(input_size, 2)
                self.layer4 = self._make_layer(4,
                                               block,
                                               512,
                                               layers[3],
                                               strides=2,
                                               avg_down=avg_down,
                                               norm_layer=norm_layer,
                                               last_gamma=last_gamma,
                                               dropblock_prob=dropblock_prob,
                                               input_size=input_size,
                                               use_splat=use_splat,
                                               avd=avd)
                input_size = _update_input_size(input_size, 2)
            self.avgpool = nn.GlobalAvgPool2D()
            self.flat = nn.Flatten()
            self.drop = None
            if final_drop > 0.0:
                self.drop = nn.Dropout(final_drop)
            if not self.face_recog:
                self.fc = nn.Dense(in_units=512 * block.expansion,
                                   units=classes)
Example #10
0
    def __init__(self, repeat=6, penultimate_filters=4032, stem_filters=96,
                 filters_multiplier=2, classes=1000, use_aux=True,
                 norm_layer=BatchNorm, norm_kwargs=None):
        super(NASNetALarge, self).__init__()

        filters = penultimate_filters // 24

        self.conv0 = nn.HybridSequential(prefix='')
        self.conv0.add(nn.Conv2D(stem_filters, 3, padding=0, strides=2, use_bias=False))
        self.conv0.add(norm_layer(momentum=0.1, epsilon=0.001,
                                  **({} if norm_kwargs is None else norm_kwargs)))

        self.cell_stem_0 = CellStem0(stem_filters, norm_layer, norm_kwargs,
                                     num_filters=filters // (filters_multiplier ** 2))
        self.cell_stem_1 = CellStem1(filters // filters_multiplier,
                                     norm_layer, norm_kwargs)

        self.norm_1 = nn.HybridSequential(prefix='')
        self.norm_1.add(FirstCell(out_channels_left=filters//2, out_channels_right=filters,
                                  norm_layer=norm_layer, norm_kwargs=norm_kwargs))
        for _ in range(repeat - 1):
            self.norm_1.add(NormalCell(out_channels_left=filters, out_channels_right=filters,
                                       norm_layer=norm_layer, norm_kwargs=norm_kwargs))

        self.reduction_cell_0 = ReductionCell0(out_channels_left=2*filters,
                                               out_channels_right=2*filters,
                                               norm_layer=norm_layer, norm_kwargs=norm_kwargs)

        self.norm_2 = nn.HybridSequential(prefix='')
        self.norm_2.add(FirstCell(out_channels_left=filters, out_channels_right=2*filters,
                                  norm_layer=norm_layer, norm_kwargs=norm_kwargs))
        for _ in range(repeat - 1):
            self.norm_2.add(NormalCell(out_channels_left=2*filters, out_channels_right=2*filters,
                                       norm_layer=norm_layer, norm_kwargs=norm_kwargs))

        if use_aux:
            self.out_aux = nn.HybridSequential(prefix='')
            self.out_aux.add(nn.Conv2D(filters // 3, kernel_size=1, use_bias=False))
            self.out_aux.add(norm_layer(epsilon=0.001,
                                        **({} if norm_kwargs is None else norm_kwargs)))
            self.out_aux.add(nn.Activation('relu'))
            self.out_aux.add(nn.Conv2D(2*filters, kernel_size=5, use_bias=False))
            self.out_aux.add(norm_layer(epsilon=0.001,
                                        **({} if norm_kwargs is None else norm_kwargs)))
            self.out_aux.add(nn.Activation('relu'))
            self.out_aux.add(nn.Dense(classes))
        else:
            self.out_aux = None

        self.reduction_cell_1 = ReductionCell1(out_channels_left=4*filters,
                                               out_channels_right=4*filters,
                                               norm_layer=norm_layer, norm_kwargs=norm_kwargs)

        self.norm_3 = nn.HybridSequential(prefix='')
        self.norm_3.add(FirstCell(out_channels_left=2*filters, out_channels_right=4*filters,
                                  norm_layer=norm_layer, norm_kwargs=norm_kwargs))
        for _ in range(repeat - 1):
            self.norm_3.add(NormalCell(out_channels_left=4*filters, out_channels_right=4*filters,
                                       norm_layer=norm_layer, norm_kwargs=norm_kwargs))

        self.out = nn.HybridSequential(prefix='')
        self.out.add(nn.Activation('relu'))
        self.out.add(nn.GlobalAvgPool2D())
        self.out.add(nn.Dropout(0.5))
        self.out.add(nn.Dense(classes))
Example #11
0
                  padding=0,
                  activation='relu'),
        nn.Conv2D(channels=channels,
                  kernel_size=1,
                  strides=strides,
                  padding=0,
                  activation='relu'),
    )
    if max_pooling:
        out.add(nn.MaxPool2D(pool_size=3, strides=2))
    return out


net = nn.Sequential()
with net.name_scope():
    net.add(mlpconv(channels=96, kernel_size=11, padding=0, strides=4),
            mlpconv(channels=256, kernel_size=5, padding=2),
            mlpconv(channels=384, kernel_size=3, padding=1), nn.Dropout(.5),
            mlpconv(10, 3, 1, max_pooling=False), nn.GlobalAvgPool2D(),
            nn.Flatten())
import sys
sys.path.append('..')
import gluonbook as gb
from mxnet import gluon
from mxnet import init
train_data, test_data = gb.load_data_fashion_mnist(batch_size=64, resize=224)
ctx = gb.try_gpu()
net.initialize(ctx=ctx, init=init.Xavier())
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})
gb.train(train_data, test_data, net, loss, trainer, ctx, 5)
Example #12
0
def resnet_block(num_channels, num_residuals, first_block=False):
    blk = nn.Sequential()
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.add(Residual(num_channels, use_1x1conv=True, strides=2))
        else:
            blk.add(Residual(num_channels))
    return blk

net.add(resnet_block(64, 2, first_block=True),
        resnet_block(128, 2),
        resnet_block(256, 2),
        resnet_block(512, 2))

net.add(nn.GlobalAvgPool2D(), nn.Dense(10))

X = nd.random.uniform(shape=(1, 1, 224, 224))
net.initialize()
for layer in net:
    X = layer(X)
    print(layer.name, 'output shape:\t', X.shape)

# 1个epoch用了将近6259.2s,将近2个小时
lr, num_epochs, batch_size, ctx = 0.05, 5, 256, d2l.try_gpu()
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs)
Example #13
0
    def _make_layers(self, cfg, use_bias, use_bn, do_topdown, do_countpath):
        layers = []
        layers_drm = []
        layers_drm_cp = []
        in_channels = 3

        for i, x in enumerate(cfg):
            if x == 'M':
                layers += [
                    nn.MaxPool2D(pool_size=2, strides=2),
                    nn.Dropout(0.5)
                ]
                if do_topdown:
                    if use_bn:
                        layers_drm += [
                            UpsampleLayer(size=2, scale=1.),
                            nn.Dropout(0.5),
                            nn.BatchNorm()
                        ]
                    else:
                        layers_drm += [
                            UpsampleLayer(size=2, scale=1.),
                            nn.Dropout(0.5)
                        ]

                if do_countpath:
                    if use_bn:
                        layers_drm_cp += [
                            UpsampleLayer(size=2, scale=1.),
                            nn.Dropout(0.5),
                            nn.BatchNorm()
                        ]
                    else:
                        layers_drm_cp += [
                            UpsampleLayer(size=2, scale=1.),
                            nn.Dropout(0.5)
                        ]
            elif x == 'A':
                layers += [nn.GlobalAvgPool2D(prefix='avg_')]
                if self.vgg_name == 'VGG16long':
                    upsize = 7
                elif self.vgg_name == 'VGG16':
                    upsize = 7
                elif self.vgg_name == 'AllConvImgNet':
                    upsize = 5
                else:
                    upsize = 6

                if do_topdown:
                    if use_bn:
                        layers_drm += [
                            UpsampleLayer(size=upsize,
                                          scale=1. / (upsize**2),
                                          prefix='avg_'),
                            nn.BatchNorm()
                        ]
                    else:
                        layers_drm += [
                            UpsampleLayer(size=upsize,
                                          scale=1. / (upsize**2),
                                          prefix='avg_')
                        ]

                if do_countpath:
                    if use_bn:
                        layers_drm_cp += [
                            UpsampleLayer(size=upsize,
                                          scale=1. / (upsize**2),
                                          prefix='avg_'),
                            nn.BatchNorm()
                        ]
                    else:
                        layers_drm_cp += [
                            UpsampleLayer(size=upsize,
                                          scale=1. / (upsize**2),
                                          prefix='avg_')
                        ]
            else:
                if self.vgg_name == 'AllConv13':
                    padding_fw = (0, 0) if x == 512 else (1, 1)
                    padding_bw = (0, 0) if x == 512 else (1, 1)
                elif self.vgg_name == 'AllConvImgNet':
                    padding_fw = (0, 0) if (x == 1024 or x == 1000) else (1, 1)
                    padding_bw = (0, 0) if (x == 1024 or x == 1000) else (1, 1)
                else:
                    padding_fw = (1, 1)
                    padding_bw = (1, 1)

                if use_bn:
                    if self.vgg_name == 'AllConvImgNet' and (
                            x == 1024 or x == 1000) and cfg[i - 1] != 'M':
                        conv_layer = nn.Conv2D(in_channels=in_channels,
                                               channels=x,
                                               kernel_size=(1, 1),
                                               padding=padding_fw,
                                               use_bias=False)
                    else:
                        conv_layer = nn.Conv2D(in_channels=in_channels,
                                               channels=x,
                                               kernel_size=(3, 3),
                                               padding=padding_fw,
                                               use_bias=False)
                    if use_bias:
                        layers += [
                            conv_layer,
                            nn.BatchNorm(),
                            BiasAdder(channels=x),
                            nn.LeakyReLU(alpha=0.1)
                        ]
                    else:
                        layers += [
                            conv_layer,
                            nn.BatchNorm(),
                            nn.LeakyReLU(alpha=0.1)
                        ]
                    if do_topdown:
                        if (cfg[i - 1] == 'M'
                                or cfg[i - 1] == 'A') and not i == 0:
                            if self.vgg_name == 'AllConvImgNet' and (
                                    x == 1024
                                    or x == 1000) and cfg[i - 1] != 'M':
                                layers_drm += [
                                    nn.Conv2DTranspose(
                                        channels=in_channels,
                                        in_channels=x,
                                        kernel_size=1,
                                        strides=(1, 1),
                                        padding=padding_bw,
                                        use_bias=False,
                                        params=conv_layer.params)
                                ]
                            else:
                                layers_drm += [
                                    nn.Conv2DTranspose(
                                        channels=in_channels,
                                        in_channels=x,
                                        kernel_size=3,
                                        strides=(1, 1),
                                        padding=padding_bw,
                                        use_bias=False,
                                        params=conv_layer.params)
                                ]
                        else:
                            if self.vgg_name == 'AllConvImgNet' and (
                                    x == 1024
                                    or x == 1000) and cfg[i - 1] != 'M':
                                layers_drm += [
                                    nn.BatchNorm(),
                                    nn.Conv2DTranspose(
                                        channels=in_channels,
                                        in_channels=x,
                                        kernel_size=1,
                                        strides=(1, 1),
                                        padding=padding_bw,
                                        use_bias=False,
                                        params=conv_layer.params)
                                ]
                            else:
                                layers_drm += [
                                    nn.BatchNorm(),
                                    nn.Conv2DTranspose(
                                        channels=in_channels,
                                        in_channels=x,
                                        kernel_size=3,
                                        strides=(1, 1),
                                        padding=padding_bw,
                                        use_bias=False,
                                        params=conv_layer.params)
                                ]
                    if do_countpath:
                        if cfg[i - 1] == 'M' or cfg[i - 1] == 'A':
                            if self.vgg_name == 'AllConvImgNet' and (
                                    x == 1024
                                    or x == 1000) and cfg[i - 1] != 'M':
                                layers_drm_cp += [
                                    nn.Conv2DTranspose(channels=in_channels,
                                                       in_channels=x,
                                                       kernel_size=1,
                                                       strides=(1, 1),
                                                       padding=padding_bw,
                                                       use_bias=False)
                                ]
                            else:
                                layers_drm_cp += [
                                    nn.Conv2DTranspose(channels=in_channels,
                                                       in_channels=x,
                                                       kernel_size=3,
                                                       strides=(1, 1),
                                                       padding=padding_bw,
                                                       use_bias=False)
                                ]
                        else:
                            if self.vgg_name == 'AllConvImgNet' and (
                                    x == 1024
                                    or x == 1000) and cfg[i - 1] != 'M':
                                layers_drm_cp += [
                                    nn.BatchNorm(),
                                    nn.Conv2DTranspose(channels=in_channels,
                                                       in_channels=x,
                                                       kernel_size=1,
                                                       strides=(1, 1),
                                                       padding=padding_bw,
                                                       use_bias=False)
                                ]
                            else:
                                layers_drm_cp += [
                                    nn.BatchNorm(),
                                    nn.Conv2DTranspose(channels=in_channels,
                                                       in_channels=x,
                                                       kernel_size=3,
                                                       strides=(1, 1),
                                                       padding=padding_bw,
                                                       use_bias=False)
                                ]

                elif use_bias:
                    if self.vgg_name == 'AllConvImgNet' and (
                            x == 1024 or x == 1000) and cfg[i - 1] != 'M':
                        conv_layer = nn.Conv2D(in_channels=in_channels,
                                               channels=x,
                                               kernel_size=(1, 1),
                                               padding=padding_fw,
                                               use_bias=True)
                    else:
                        conv_layer = nn.Conv2D(in_channels=in_channels,
                                               channels=x,
                                               kernel_size=(3, 3),
                                               padding=padding_fw,
                                               use_bias=True)
                    layers += [conv_layer, nn.LeakyReLU(alpha=0.1)]
                    if do_topdown:
                        layers_drm += [
                            nn.Conv2DTranspose(channels=in_channels,
                                               in_channels=x,
                                               kernel_size=3,
                                               strides=(1, 1),
                                               padding=padding_bw,
                                               use_bias=False,
                                               params=conv_layer.params)
                        ]
                    if do_countpath:
                        layers_drm_cp += [
                            nn.Conv2DTranspose(channels=in_channels,
                                               in_channels=x,
                                               kernel_size=3,
                                               strides=(1, 1),
                                               padding=padding_bw,
                                               use_bias=False)
                        ]
                else:
                    if self.vgg_name == 'AllConvImgNet' and (
                            x == 1024 or x == 1000) and cfg[i - 1] != 'M':
                        conv_layer = nn.Conv2D(in_channels=in_channels,
                                               channels=x,
                                               kernel_size=(1, 1),
                                               padding=padding_fw,
                                               use_bias=False)
                    else:
                        conv_layer = nn.Conv2D(in_channels=in_channels,
                                               channels=x,
                                               kernel_size=(3, 3),
                                               padding=padding_fw,
                                               use_bias=False)
                    layers += [conv_layer, nn.LeakyReLU(alpha=0.1)]
                    if do_topdown:
                        layers_drm += [
                            nn.Conv2DTranspose(channels=in_channels,
                                               in_channels=x,
                                               kernel_size=3,
                                               strides=(1, 1),
                                               padding=padding_bw,
                                               use_bias=False,
                                               params=conv_layer.params)
                        ]
                    if do_countpath:
                        layers_drm_cp += [
                            nn.Conv2DTranspose(channels=in_channels,
                                               in_channels=x,
                                               kernel_size=3,
                                               strides=(1, 1),
                                               padding=padding_bw,
                                               use_bias=False)
                        ]

                in_channels = x

        with self.name_scope():
            model = nn.HybridSequential(prefix='features_')
            for block in layers:
                model.add(block)

        return model, layers_drm, layers_drm_cp
Example #14
0

# ResNet, 18-layer
net = nn.Sequential()
# 1+17=18层
net.add(nn.Conv2D(64, kernel_size=7, padding=3, strides=2), nn.BatchNorm(),
        nn.Activation('relu'), nn.MaxPool2D(pool_size=3, padding=1, strides=2))
# (2+2+2+2)*2+1=17层
# 18-layer 2 2 2 2
# 34-layer 3 4 6 3 效果不是太好
net.add(
    resnet_block(64, 2, first_block=True),
    resnet_block(128, 2),
    resnet_block(256, 2),
    resnet_block(512, 2),
    nn.GlobalAvgPool2D(),  # 全局平均池化和全连接层
    nn.Dense(10))

# Test
X = nd.random.uniform(shape=(1, 1, 224, 224))
net.initialize()
for layer in net:
    X = layer(X)
    print(layer.name, 'output shape:\t', X.shape)

# 读取数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)

# 重新初始化模型
ctx = d2l.try_gpu()
Example #15
0
 def __init__(self, nkernel, **kwargs):
     super(Times3, self).__init__(**kwargs)
     with self.name_scope():
         self.conv = nn.Conv2D(nkernel, kernel_size=(3, 3), padding=(1, 1))
         self.dense = nn.Dense(nkernel)
         self.pool = nn.GlobalAvgPool2D()
Example #16
0
File: dpn.py Project: osmr/khpa
 def __init__(self, **kwargs):
     super(GlobalAvgMaxPool2D, self).__init__(**kwargs)
     with self.name_scope():
         self.avg_pool = nn.GlobalAvgPool2D()
         self.max_pool = nn.GlobalMaxPool2D()
Example #17
0
 def __init__(self, num_classes, **kwargs):
     super(Output_Block, self).__init__(**kwargs)
     self.net = nn.HybridSequential()
     self.act = nn.Activation('relu')
     self.net.add(nn.BatchNorm(), self.act, nn.GlobalAvgPool2D(),
                  nn.Dense(num_classes))
Example #18
0
File: dpn.py Project: osmr/khpa
    def __init__(self,
                 channels,
                 init_block_channels,
                 init_block_kernel_size,
                 init_block_padding,
                 rs,
                 bws,
                 incs,
                 groups,
                 b_case,
                 for_training,
                 test_time_pool,
                 in_channels=3,
                 in_size=(224, 224),
                 classes=1000,
                 **kwargs):
        super(DPN, self).__init__(**kwargs)
        self.in_size = in_size
        self.classes = classes

        with self.name_scope():
            self.features = DualPathSequential(return_two=False,
                                               first_ordinals=1,
                                               last_ordinals=0,
                                               prefix='')
            self.features.add(
                DPNInitBlock(in_channels=in_channels,
                             out_channels=init_block_channels,
                             kernel_size=init_block_kernel_size,
                             padding=init_block_padding))
            in_channels = init_block_channels
            for i, channels_per_stage in enumerate(channels):
                stage = DualPathSequential(prefix='stage{}_'.format(i + 1))
                r = rs[i]
                bw = bws[i]
                inc = incs[i]
                with stage.name_scope():
                    for j, out_channels in enumerate(channels_per_stage):
                        has_proj = (j == 0)
                        key_strides = 2 if (j == 0) and (i != 0) else 1
                        stage.add(
                            DPNUnit(in_channels=in_channels,
                                    mid_channels=r,
                                    bw=bw,
                                    inc=inc,
                                    groups=groups,
                                    has_proj=has_proj,
                                    key_strides=key_strides,
                                    b_case=b_case))
                        in_channels = out_channels
                self.features.add(stage)
            self.features.add(DPNFinalBlock(channels=in_channels))

            self.output = nn.HybridSequential(prefix='')
            if for_training or not test_time_pool:
                self.output.add(nn.GlobalAvgPool2D())
                self.output.add(
                    conv1x1(in_channels=in_channels,
                            out_channels=classes,
                            use_bias=True))
                self.output.add(nn.Flatten())
            else:
                self.output.add(nn.AvgPool2D(pool_size=7, strides=1))
                self.output.add(
                    conv1x1(in_channels=in_channels,
                            out_channels=classes,
                            use_bias=True))
                self.output.add(GlobalAvgMaxPool2D())
                self.output.add(nn.Flatten())
Example #19
0
from mxnet import autograd, gluon, init, nd
from mxnet.gluon import loss as gloss, nn

net = nn.Sequential()
net.add(
    nn.Conv2D(channels=6,
              kernel_size=4,
              strides=2,
              padding=1,
              activation='relu'), nn.BatchNorm(),
    nn.Conv2D(channels=16,
              kernel_size=4,
              strides=2,
              padding=1,
              activation='relu'), nn.BatchNorm(),
    nn.Conv2D(channels=32,
              kernel_size=4,
              strides=2,
              padding=1,
              activation='relu'), nn.BatchNorm(), nn.GlobalAvgPool2D(),
    nn.Dense(7, activation='relu'), nn.Dense(1))
Example #20
0
    def __init__(self, channels, stride=1, downsample=False, **kwargs):
        super(PreActBottleneckCMPESEBlock3x3, self).__init__(**kwargs)
        self.channels = channels
        self.expansion = 4
        self.downsample = downsample
        self.bn1 = nn.BatchNorm()
        self.conv1 = nn.Conv2D(channels=channels,
                               kernel_size=1,
                               use_bias=False,
                               weight_initializer=init.Normal(
                                   math.sqrt(2. / (1. * channels))))
        self.bn2 = nn.BatchNorm()
        self.conv2 = nn.Conv2D(channels=channels,
                               kernel_size=3,
                               strides=stride,
                               padding=1,
                               use_bias=False,
                               weight_initializer=init.Normal(
                                   math.sqrt(2. / (9. * channels))))
        self.bn3 = nn.BatchNorm()
        self.conv3 = nn.Conv2D(channels=self.expansion * channels,
                               kernel_size=1,
                               use_bias=False,
                               weight_initializer=init.Normal(
                                   math.sqrt(
                                       2. / (1. * self.expansion * channels))))
        if downsample:
            self.shortcut = nn.HybridSequential()
            self.shortcut.add(
                nn.Conv2D(channels=self.expansion * channels,
                          kernel_size=1,
                          strides=stride,
                          use_bias=False,
                          weight_initializer=init.Normal(
                              math.sqrt(2. /
                                        (1. * self.expansion * channels)))))

        self.net_Global_skipx = nn.HybridSequential()
        self.net_Global_skipx.add(nn.GlobalAvgPool2D())
        self.net_Global_conv = nn.HybridSequential()
        self.net_Global_conv.add(nn.GlobalAvgPool2D())

        self.net_reimage_layer = nn.HybridSequential()
        self.net_reimage_layer.add(ResFoldReimageLayer(group_ratio=reimage_k))

        self.Multi_Map = nn.HybridSequential()
        self.Multi_Map.add(
            nn.Conv2D(channels=channels / cmpe_se_ratio,
                      kernel_size=(3, 3),
                      use_bias=False), nn.BatchNorm())

        self.net_SE = nn.HybridSequential()
        self.net_SE.add(
            nn.Flatten(),
            nn.Dense(self.expansion * channels / net_se_ratio,
                     activation='relu',
                     use_bias=False),
            nn.Dense(self.expansion * channels,
                     activation='sigmoid',
                     use_bias=False),
        )
Example #21
0
    def __init__(self, version, num_classes=1000, prefix=None, params=None):
        super(MobileNetV3, self).__init__(prefix=prefix, params=params)

        self.version = version
        assert self.version in ('large', 'small'), \
            "version is must one of (large, small)!!!"
        self.num_classes = num_classes

        with self.name_scope():
            self.first = nn.HybridSequential()
            self.first.add(
                nn.Conv2D(channels=16,
                          kernel_size=3,
                          strides=2,
                          padding=1,
                          use_bias=False))
            self.first.add(nn.BatchNorm())
            self.first.add(HardSwish())

            self.bnecks = nn.HybridSequential()
            for kernel_size, exp_size, out_size, se, nl, strides in model_config[
                    version]:
                se = SEBlock(exp_size) if se else None
                if nl == 're':
                    nl = nn.Activation('relu')
                elif nl == 'hs':
                    nl = HardSwish()
                else:
                    raise "cannot use {} activation function".format(nl)

                self.bnecks.add(
                    BneckBlock(kernel_size=kernel_size,
                               expand_size=exp_size,
                               out_size=out_size,
                               nolinear=nl,
                               seblock=se,
                               strides=strides))

            self.last = nn.HybridSequential()
            if self.version == 'small':
                self.last.add(
                    nn.Conv2D(576, kernel_size=1, strides=1, use_bias=False))
                self.last.add(SEBlock(576))
                self.last.add(nn.GlobalAvgPool2D())
                self.last.add(
                    nn.Conv2D(1280, kernel_size=1, strides=1, use_bias=False))
                self.last.add(nn.BatchNorm())
                self.last.add(HardSwish())
                self.last.add(nn.Conv2D(self.num_classes, kernel_size=1))
                self.last.add(nn.BatchNorm())
                self.last.add(HardSwish())
            else:
                self.last.add(
                    nn.Conv2D(960, kernel_size=1, strides=1, use_bias=False))
                self.last.add(nn.BatchNorm())
                self.last.add(HardSwish())
                self.last.add(nn.GlobalAvgPool2D())
                self.last.add(
                    nn.Conv2D(1280, kernel_size=1, strides=1, use_bias=False))
                self.last.add(HardSwish())
                self.last.add(nn.Conv2D(self.num_classes, kernel_size=1))
            self.last.add(nn.Flatten())
Example #22
0

blk = transition_block(10)
blk.initialize()
blk(Y).shape

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3), nn.BatchNorm(),
        nn.Activation('relu'), nn.MaxPool2D(pool_size=3, strides=2, padding=1))

num_channels, growth_rate = 64, 32  # num_channels为当前的通道数
num_convs_in_dense_blocks = [4, 4, 4, 4]

for i, num_convs in enumerate(num_convs_in_dense_blocks):
    net.add(DenseBlock(num_convs, growth_rate))
    # 上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间加入通道数减半的过渡层
    if i != len(num_convs_in_dense_blocks) - 1:
        num_channels //= 2
        net.add(transition_block(num_channels))

net.add(nn.BatchNorm(), nn.Activation('relu'), nn.GlobalAvgPool2D(),
        nn.Dense(10))

lr, num_epochs, batch_size, ctx = 0.1, 5, 256, d2l.try_gpu()
net.initialize(ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx, num_epochs)
Example #23
0
if __name__=='__main__':
    if len(sys.argv) < 2:
        print("pls enter training epochs num")
        raise SystemExit(1)

    batch_size=100
    train_data_batched, test_data_batched = load_data_fashion_mnist(batch_size=batch_size)
    nin_net = nn.Sequential()
    nin_net.add(nin_block(24, kernel_size=5, strides=2, padding=0),
                nn.MaxPool2D(pool_size=3, strides=2),
                nin_block(64, kernel_size=3, strides=1, padding=1),
                nn.MaxPool2D(pool_size=3, strides=2),
                nin_block(96, kernel_size=3, strides=1, padding=1),
                nn.MaxPool2D(pool_size=2, strides=1), nn.Dropout(0.5),
                nin_block(10, kernel_size=3, strides=1, padding=1),
                nn.GlobalAvgPool2D(),
                nn.Flatten())

    '''
    X = nd.random.uniform(shape=(100, 1, 28, 28))
    nin_net.initialize()
    for blk in nin_net:
        X = blk(X)
        print(blk.name, 'output shape:\t', X.shape)
    '''

    lr = 0.05
    num_epochs = int(sys.argv[1])
    nin_net.initialize(force_reinit=True, init=init.Xavier(), ctx=ctx)
    trainer = gluon.Trainer(nin_net.collect_params(), 'sgd', {'learning_rate': lr})
    test_acc_list = do_train(net=nin_net, 
Example #24
0
    def __init__(self,
                 units,
                 num_stage,
                 filter_list,
                 ratio_list,
                 num_class,
                 num_group,
                 data_type,
                 drop_out,
                 bn_mom=0.9,
                 **kwargs):
        super(resnext, self).__init__(**kwargs)
        num_unit = len(units)
        assert (num_unit == num_stage)
        self.num_class = num_class

        # fw
        self.conv0 = nn.Conv2D(in_channels=3,
                               channels=filter_list[0],
                               kernel_size=(7, 7),
                               strides=(2, 2),
                               padding=(3, 3),
                               use_bias=False,
                               prefix='conv0_')
        self.bn0 = nn.BatchNorm(in_channels=filter_list[0],
                                epsilon=2e-5,
                                momentum=bn_mom,
                                prefix='batchnorm0_')
        self.in0 = nn.BatchNorm(in_channels=filter_list[0],
                                epsilon=2e-5,
                                momentum=bn_mom,
                                prefix='insnorm0_')
        self.bias0 = BiasAdder(channels=filter_list[0], prefix='bias0_')
        self.relu0 = nn.Activation(activation='relu', prefix='relu0_')
        self.relu0min = NReLu(prefix='relu0min_')
        self.pool0 = nn.MaxPool2D(pool_size=(2, 2),
                                  strides=(2, 2),
                                  padding=(0, 0),
                                  prefix='pool0_')

        # td
        self.upsample0 = UpsampleLayer(size=2, scale=1., prefix='up0_')
        self.bntd0 = nn.BatchNorm(in_channels=filter_list[0],
                                  epsilon=2e-5,
                                  momentum=bn_mom,
                                  prefix='td_batchnorm0_')
        self.intd0 = nn.BatchNorm(in_channels=filter_list[0],
                                  epsilon=2e-5,
                                  momentum=bn_mom,
                                  prefix='td_insnorm0_')
        self.bntd0min = nn.BatchNorm(in_channels=filter_list[0],
                                     epsilon=2e-5,
                                     momentum=bn_mom,
                                     prefix='td_batchnorm0min_')
        self.intd0min = nn.BatchNorm(in_channels=filter_list[0],
                                     epsilon=2e-5,
                                     momentum=bn_mom,
                                     prefix='td_insnorm0min_')
        self.tdconv0 = nn.Conv2DTranspose(channels=3,
                                          in_channels=filter_list[0],
                                          kernel_size=(7, 7),
                                          strides=(2, 2),
                                          padding=(3, 3),
                                          output_padding=1,
                                          use_bias=False,
                                          params=self.conv0.params,
                                          prefix='td_conv0_')

        self.residual_stages = nn.HybridSequential(prefix='residual_')
        topdown_list = []
        for i in range(num_stage):
            self.residual_stages.add(
                residual_unit(in_channels=filter_list[i],
                              num_filter=filter_list[i + 1],
                              ratio=ratio_list[2],
                              strides=(1 if i == 0 else 2, 1 if i == 0 else 2),
                              dim_match=False,
                              name='stage%d_unit%d' % (i + 1, 1),
                              num_group=num_group,
                              bn_mom=bn_mom,
                              prefix='stage%d_unit%d_' % (i + 1, 1)))
            topdown_list.append(
                topdown_residual_unit(fwblock=self.residual_stages[-1],
                                      name='stage%d_td_unit%d' % (i + 1, 1),
                                      prefix='stage%d_td_unit%d_' %
                                      (i + 1, 1)))
            for j in range(units[i] - 1):
                self.residual_stages.add(
                    residual_unit(in_channels=filter_list[i + 1],
                                  num_filter=filter_list[i + 1],
                                  ratio=ratio_list[2],
                                  strides=(1, 1),
                                  dim_match=True,
                                  name='stage%d_unit%d' % (i + 1, j + 2),
                                  num_group=num_group,
                                  bn_mom=bn_mom,
                                  prefix='stage%d_unit%d_' % (i + 1, j + 2)))
                topdown_list.append(
                    topdown_residual_unit(
                        fwblock=self.residual_stages[-1],
                        name='stage%d_td_unit%d' % (i + 1, j + 2),
                        prefix='stage%d_td_unit%d_' % (i + 1, j + 2)))

        with self.name_scope():
            self.topdown_stages = nn.HybridSequential(prefix='td_residual_')
            for block in topdown_list[::-1]:
                self.topdown_stages.add(block)

        # fw classifier
        self.pool1 = nn.GlobalAvgPool2D(prefix='pool1_')
        self.drop1 = nn.Dropout(rate=drop_out, prefix='dp1_')
        self.fc = nn.Conv2D(in_channels=filter_list[-1],
                            channels=num_class,
                            kernel_size=(1, 1),
                            use_bias=True,
                            prefix='dense_')
        self.flatten1 = nn.Flatten(prefix='flatten1_')

        # bw classifier
        self.reshape = Reshape(shape=(num_class, 1, 1), prefix='reshape_')
        self.td_drop1 = nn.Dropout(rate=drop_out, prefix='td_dp1_')
        self.td_fc = nn.Conv2DTranspose(channels=filter_list[-1],
                                        in_channels=num_class,
                                        kernel_size=(1, 1),
                                        strides=(1, 1),
                                        use_bias=False,
                                        params=self.fc.params,
                                        prefix='td_dense_')
        self.upsample1 = UpsampleLayer(size=7,
                                       scale=1. / (7**2),
                                       prefix='up1_')
Example #25
0
def resnet_block(num_channels, num_residuals, first_block = False):
    blk = nn.Sequential()
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.add(Residual(num_channels,use_1x1conv=True, strides=2))
        else:
            blk.add(Residual(num_channels))
    return blk


net.add(resnet_block(64,2, first_block=True),
        resnet_block(128,2),
        resnet_block(256,2),
        resnet_block(512,2),
        nn.GlobalAvgPool2D(),nn.Dense(10))




# X = nd.random.uniform(shape=(1, 64, 56, 56))
# net.initialize()
# for layer in net:
#     X = layer(X)
#     print(layer.name, 'out put shape:', X.shape)

lr = 0.05
num_epochs = 5
batch_size = 256
ctx = mx.gpu(2)
net.initialize(ctx = ctx, init = init.Xavier())
Example #26
0
 def __init__(self,
              block,
              layers,
              channels,
              alpha=2,
              beta=4,
              classes=1000,
              thumbnail=False,
              last_gamma=False,
              use_se=False,
              norm_layer=BatchNorm,
              norm_kwargs=None,
              **kwargs):
     super(BLResNetV1, self).__init__(**kwargs)
     with self.name_scope():
         self.features = nn.HybridSequential(prefix='')
         with self.features.name_scope():
             self.features.add(
                 nn.Conv2D(channels[0],
                           7,
                           2,
                           3,
                           use_bias=False,
                           in_channels=3))
             self.features.add(norm_layer(in_channels=channels[0]))
             self.features.add(nn.Activation('relu'))
             self.features.add(BLModule_0(channels[0], alpha, norm_layer))
             self.features.add(
                 BLModule(block,
                          channels[0],
                          channels[0] * block.expansion,
                          layers[0],
                          alpha,
                          beta,
                          stride=2,
                          hw=56))
             self.features.add(
                 BLModule(block,
                          channels[0] * block.expansion,
                          channels[1] * block.expansion,
                          layers[1],
                          alpha,
                          beta,
                          stride=2,
                          hw=28))
             self.features.add(
                 BLModule(block,
                          channels[1] * block.expansion,
                          channels[2] * block.expansion,
                          layers[2],
                          alpha,
                          beta,
                          stride=1,
                          hw=14))
             self.features.add(
                 BLModule_4(block,
                            channels[2] * block.expansion,
                            channels[3] * block.expansion,
                            layers[3],
                            stride=2))
             self.features.add(nn.GlobalAvgPool2D())
             self.features.add(nn.Flatten())
             self.fc = nn.Dense(classes,
                                in_units=channels[-1] * block.expansion)
    def __init__(self,
                 input_size=224,
                 n_class=1000,
                 architecture=None,
                 channels_idx=None,
                 act_type='relu',
                 search=False):
        super(ShuffleNetV2_OneShot, self).__init__()

        assert input_size % 32 == 0
        assert architecture is not None and channels_idx is not None
        self.stage_repeats = [4, 4, 8, 4]
        self.stage_out_channels = [-1, 16, 64, 160, 320, 640, 1024]
        self.candidate_scales = [
            0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
        ]
        #self.stage_out_channels = [-1, 16, 48, 128, 256, 512, 1024]
        input_channel = self.stage_out_channels[1]
        self.search = search

        self.first_conv = nn.HybridSequential(prefix='first_')
        self.first_conv.add(
            nn.Conv2D(input_channel,
                      in_channels=3,
                      kernel_size=3,
                      strides=2,
                      padding=1,
                      use_bias=False))
        self.first_conv.add(
            nn.BatchNorm(in_channels=input_channel, momentum=0.1))
        self.first_conv.add(Activation(act_type))

        self.features = nn.HybridSequential(prefix='features_')
        archIndex = 0
        for idxstage in range(len(self.stage_repeats)):
            numrepeat = self.stage_repeats[idxstage]
            output_channel = self.stage_out_channels[idxstage + 2]

            for i in range(numrepeat):
                if i == 0:
                    inp, outp, stride = input_channel, output_channel, 2
                else:
                    inp, outp, stride = input_channel, output_channel, 1

                blockIndex = architecture[archIndex]
                base_mid_channels = outp // 2
                mid_channels = int(
                    base_mid_channels *
                    self.candidate_scales[channels_idx[archIndex]])
                archIndex += 1
                self.features.add(nn.HybridSequential(prefix=''))

                if blockIndex == 0:
                    #print('Shuffle3x3')
                    self.features[-1].add(
                        Shufflenet(inp,
                                   outp,
                                   mid_channels=mid_channels,
                                   ksize=3,
                                   stride=stride,
                                   act_type='relu',
                                   BatchNorm=nn.BatchNorm,
                                   search=self.search))
                elif blockIndex == 1:
                    #print('Shuffle5x5')
                    self.features[-1].add(
                        Shufflenet(inp,
                                   outp,
                                   mid_channels=mid_channels,
                                   ksize=5,
                                   stride=stride,
                                   act_type='relu',
                                   BatchNorm=nn.BatchNorm,
                                   search=self.search))
                elif blockIndex == 2:
                    #print('Shuffle7x7')
                    self.features[-1].add(
                        Shufflenet(inp,
                                   outp,
                                   mid_channels=mid_channels,
                                   ksize=7,
                                   stride=stride,
                                   act_type='relu',
                                   BatchNorm=nn.BatchNorm,
                                   search=self.search))
                elif blockIndex == 3:
                    #print('Xception')
                    self.features[-1].add(
                        Shuffle_Xception(inp,
                                         outp,
                                         mid_channels=mid_channels,
                                         stride=stride,
                                         act_type='relu',
                                         BatchNorm=nn.BatchNorm,
                                         search=self.search))
                else:
                    raise NotImplementedError
                input_channel = output_channel
        assert archIndex == len(architecture)
        self.conv_last = nn.HybridSequential(prefix='last_')
        self.conv_last.add(
            nn.Conv2D(self.stage_out_channels[-1],
                      in_channels=input_channel,
                      kernel_size=1,
                      strides=1,
                      padding=0,
                      use_bias=False))
        self.conv_last.add(
            nn.BatchNorm(in_channels=self.stage_out_channels[-1],
                         momentum=0.1))
        self.conv_last.add(Activation(act_type))

        self.globalpool = nn.GlobalAvgPool2D()
        self.output = nn.HybridSequential(prefix='output_')
        with self.output.name_scope():
            self.output.add(
                nn.Dropout(0.1),
                nn.Dense(units=n_class,
                         in_units=self.stage_out_channels[-1],
                         use_bias=False))
    def __init__(self,
                 alpha=1.0,
                 beta=1.0,
                 lite=False,
                 dropout_rate=0.0,
                 classes=1000,
                 **kwargs):
        super(EfficientNet, self).__init__(**kwargs)
        with self.name_scope():
            self.features = nn.HybridSequential(prefix='features_')
            with self.features.name_scope():
                # stem conv
                channels = 32 if lite else int(32 * beta)
                _add_conv(self.features,
                          channels,
                          kernel=3,
                          stride=2,
                          pad=1,
                          active=True,
                          lite=lite)

                # base model settings
                repeats = [1, 2, 2, 3, 3, 4, 1]
                channels_num = [16, 24, 40, 80, 112, 192, 320]
                kernels_num = [3, 3, 5, 3, 5, 5, 3]
                t_num = [1, 6, 6, 6, 6, 6, 6]
                strides_first = [1, 2, 2, 1, 2, 2, 1]

                # determine params of MBConv layers
                in_channels_group = []
                for rep, ch_num in zip([1] + repeats[:-1],
                                       [32] + channels_num[:-1]):
                    in_channels_group += [int(ch_num * beta)] * int(
                        ceil(alpha * rep))
                channels_group, kernels, ts, strides = [], [], [], []
                for rep, ch, kernel, t, s in zip(repeats, channels_num,
                                                 kernels_num, t_num,
                                                 strides_first):
                    rep = int(ceil(alpha * rep))
                    channels_group += [int(ch * beta)] * rep
                    kernels += [kernel] * rep
                    ts += [t] * rep
                    strides += [s] + [1] * (rep - 1)

                # add MBConv layers
                for in_c, c, t, k, s in zip(in_channels_group, channels_group,
                                            ts, kernels, strides):
                    self.features.add(
                        MBConv(in_channels=in_c,
                               channels=c,
                               t=t,
                               kernel=k,
                               stride=s,
                               lite=lite))

                # head layers
                last_channels = int(1280 *
                                    beta) if not lite and beta > 1.0 else 1280
                _add_conv(self.features, last_channels, active=True, lite=lite)
                self.features.add(nn.GlobalAvgPool2D())

            # features dropout
            self.dropout = nn.Dropout(
                dropout_rate) if dropout_rate > 0.0 else None

            # output layer
            self.output = nn.HybridSequential(prefix='output_')
            with self.output.name_scope():
                self.output.add(
                    nn.Conv2D(classes, 1, use_bias=False, prefix='pred_'),
                    nn.Flatten())
Example #29
0
    def __init__(self,
                 block,
                 layers,
                 channels,
                 classes=1000,
                 embed_size=512,
                 thumbnail=False,
                 use_dropout=False,
                 use_norm=False,
                 use_angular=False,
                 **kwargs):
        super(ResNetV2, self).__init__(**kwargs)
        assert len(layers) == len(channels) - 1
        with self.name_scope():
            self.use_norm = use_norm
            self.use_angular = use_angular

            self.features = nn.HybridSequential(prefix='')
            self.features.add(nn.BatchNorm(scale=False, center=False))
            if thumbnail:
                self.features.add(_conv3x3(channels[0], 1, 0))
            else:
                self.features.add(
                    nn.Conv2D(channels[0], 7, 2, 3, use_bias=False))
                self.features.add(nn.BatchNorm())
                self.features.add(nn.Activation('relu'))
                self.features.add(nn.MaxPool2D(3, 2, 1))

            in_channels = channels[0]
            for i, num_layer in enumerate(layers):
                stride = 1 if i == 0 else 2
                self.features.add(
                    self._make_layer(block,
                                     num_layer,
                                     channels[i + 1],
                                     stride,
                                     i + 1,
                                     in_channels=in_channels))
                in_channels = channels[i + 1]
            self.features.add(nn.BatchNorm())
            self.features.add(nn.Activation('relu'))
            self.features.add(nn.GlobalAvgPool2D())
            self.features.add(nn.Flatten())

            self.embeds = nn.HybridSequential(prefix='')
            self.embeds.add(
                nn.Dense(4096,
                         activation='relu',
                         weight_initializer='normal',
                         bias_initializer='zeros'))
            if use_dropout:
                self.embeds.add(nn.Dropout(rate=0.5))
            self.embeds.add(
                nn.Dense(embed_size,
                         activation='relu',
                         weight_initializer='normal',
                         bias_initializer='zeros'))
            if use_dropout:
                self.embeds.add(nn.Dropout(rate=0.5))

            if self.use_norm:
                self.embeds.add(L2Normalization(mode='instance'))

            if self.use_angular:
                self.output = AngularLinear(classes, in_uints=embed_size)
            else:
                self.output = nn.Dense(classes, in_units=embed_size)
Example #30
0
    def __init__(self,
                 nclass,
                 block,
                 layers,
                 shortcut_type='B',
                 block_design=('A', 'B', 'C'),
                 dropout_ratio=0.5,
                 num_segments=1,
                 num_crop=1,
                 feat_ext=False,
                 init_std=0.001,
                 ctx=None,
                 partial_bn=False,
                 norm_layer=BatchNorm,
                 norm_kwargs=None,
                 **kwargs):
        super(P3D, self).__init__()
        self.shortcut_type = shortcut_type
        self.block_design = block_design
        self.partial_bn = partial_bn
        self.dropout_ratio = dropout_ratio
        self.init_std = init_std
        self.num_segments = num_segments
        self.num_crop = num_crop
        self.feat_ext = feat_ext
        self.inplanes = 64
        self.feat_dim = 512 * block.expansion

        with self.name_scope():
            self.conv1 = nn.Conv3D(in_channels=3,
                                   channels=64,
                                   kernel_size=(1, 7, 7),
                                   strides=(1, 2, 2),
                                   padding=(0, 3, 3),
                                   use_bias=False)
            self.bn1 = norm_layer(
                in_channels=64, **({} if norm_kwargs is None else norm_kwargs))
            self.relu = nn.Activation('relu')
            self.pool = nn.MaxPool3D(pool_size=(2, 3, 3),
                                     strides=2,
                                     padding=(0, 1, 1))
            self.pool2 = nn.MaxPool3D(pool_size=(2, 1, 1),
                                      strides=(2, 1, 1),
                                      padding=0)

            if self.partial_bn:
                if norm_kwargs is not None:
                    norm_kwargs['use_global_stats'] = True
                else:
                    norm_kwargs = {}
                    norm_kwargs['use_global_stats'] = True

            # 3D layers are only for (layers1, layers2 and layers3), layers4 is C2D
            self.depth_3d = sum(layers[:3])
            self.layer_cnt = 0

            self.layer1 = self._make_res_layer(block=block,
                                               planes=64,
                                               blocks=layers[0],
                                               layer_name='layer1_')
            self.layer2 = self._make_res_layer(block=block,
                                               planes=128,
                                               blocks=layers[1],
                                               spatial_stride=2,
                                               layer_name='layer2_')
            self.layer3 = self._make_res_layer(block=block,
                                               planes=256,
                                               blocks=layers[2],
                                               spatial_stride=2,
                                               layer_name='layer3_')
            self.layer4 = self._make_res_layer(block=block,
                                               planes=512,
                                               blocks=layers[3],
                                               spatial_stride=2,
                                               layer_name='layer4_')

            self.avgpool = nn.GlobalAvgPool2D()
            self.dropout = nn.Dropout(rate=self.dropout_ratio)
            self.fc = nn.Dense(
                in_units=self.feat_dim,
                units=nclass,
                weight_initializer=init.Normal(sigma=self.init_std))