def house_prise():
    """
    使用线性回归估算房价
    :return:
    """

    # 特征
    X = nd.array([[120, 2], [100, 1], [130, 3]])
    logger.info(nd.norm(X, axis=0))
    # 值
    lables = nd.array([130, 98, 140])
    logger.info(nd.norm(lables, axis=0))

    # 权重 偏差
    w = nd.random.normal(scale=0.01, shape=(2, 1))
    b = nd.zeros(shape=(1, ))

    w.attach_grad()
    b.attach_grad()

    for i in range(5):
        for x, y in data_iter(10, X, lables):
            with autograd.record():
                l = squared_loss(linreg(x, w, b), y)
                logger.info(l.mean().asnumpy())
            l.backward()
            sgd([w, b], 0.02, 10)

    logger.info(w)
    logger.info(b)
def test_norm():
    a = np.array(np.full((1, LARGE_X), 3))
    b = np.array(np.full((1, LARGE_X), 4))
    c = nd.array(np.concatenate((a,b), axis=0))
    d = nd.norm(c, ord=2, axis=0)
    e = nd.norm(c, ord=1, axis=0)
    assert d.shape[0] == LARGE_X
    assert e.shape[0] == LARGE_X
    assert d[-1] == 5
    assert e[-1] == 7
Example #3
0
def fltrust(epoch, gradients, net, lr, f, byz):

    param_list = [
        nd.concat(*[xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients
    ]
    # let the malicious clients (first f clients) perform the byzantine attack
    param_list = byz(epoch, param_list, net, lr, f)
    n = len(param_list
            ) - 1  # -1 so as to not include the gradient of the server model

    # use the last gradient (server update) as the trusted source
    #print(nd.array(param_list[-1]).shape)
    baseline = nd.array(param_list[-1]).squeeze()
    #print(baseline.shape)
    cos_sim = []
    new_param_list = []

    #print(param_list[0].shape)
    print(nd.norm(baseline))
    # compute cos similarity
    for each_param_list in param_list:
        each_param_array = nd.array(each_param_list).squeeze()
        cos_sim.append(
            nd.dot(baseline, each_param_array) / (nd.norm(baseline) + 1e-9) /
            (nd.norm(each_param_array) + 1e-9))

    cos_sim = nd.stack(*cos_sim)[:-1]
    #print(cos_sim)
    cos_sim = nd.maximum(cos_sim, 0)  # relu
    cos_sim = nd.minimum(cos_sim, 1)
    #print(cos_sim)
    normalized_weights = cos_sim / (nd.sum(cos_sim) + 1e-9
                                    )  # weighted trust score
    #print(normalized_weights)

    # normalize the magnitudes and weight by the trust score
    for i in range(n):
        new_param_list.append(param_list[i] * normalized_weights[i] /
                              (nd.norm(param_list[i]) + 1e-9) *
                              nd.norm(baseline))
        #print(normalized_weights[i] / (nd.norm(param_list[i]) + 1e-9) * nd.norm(baseline))
    #print("normalized weights: " + str(normalized_weights[i]))
    #print("baseline: " + str(nd.norm(baseline)))

    # update the global model
    global_update = nd.sum(nd.concat(*new_param_list, dim=1), axis=-1)
    idx = 0
    for j, (param) in enumerate(net.collect_params().values()):
        if param.grad_req == 'null':
            continue
        #print(global_update[idx:(idx+param.data().size)])
        param.set_data(param.data() - lr * global_update[idx:(
            idx + param.data().size)].reshape(param.data().shape))
        idx += param.data().size
    def E(self, chi):
        al_id = chi[0:100]
        al_exp = chi[100:179]
        al_alb = chi[179:279]
        [s, pitch, yaw, roll] = chi[279:283, 0]
        t = chi[283:286]
        r = chi[286:]
        gamma = nd.reshape(r, (3, 9)).T
        lmks_2d = self.lmks['2d']
        lmks_3d_ind = self.lmks['3d']

        R = self.rot_mat(pitch, yaw, roll)

        #         p = self.p_mu + self.A_id@al_id + self.A_exp@al_exp
        #         b = self.b_mu + self.A_alb@al_alb
        #         self.vertex = np.reshape(p, (no_of_ver, 3))
        #         self.albedo = np.reshape(b, (no_of_ver, 3))
        #         p,b = self.cal_ver_alb(al_id, al_exp, al_alb)
        self.cal_ver_alb(al_id, al_exp, al_alb)
        s = 150 / nd.max(self.vertex)
        q_world = s * nd.linalg.gemm2(R, self.vertex.T) + t
        #     q_depth = [0, 0, 1]@[email protected]

        q_image = self.world_to_image(q_world.T)
        #     tri_ind_info, bary_wts_info = rasterize_triangles(q_image, tri_mesh_data, h, w)
        #     return tri_ind_info,bary_wts_info,albedo

        I_rend = self.render_color_image(q_image, self.albedo, gamma)
        self.I_rend = I_rend

        w_l = 10
        w_r = 5e-5
        E_con = (1 / self.no_of_face_pxls) * np.linalg.norm(
            I_rend - self.I_in)**2  #No of face pixels is apporximately 28241
        E_lan = (1 / self.no_of_lmks) * np.linalg.norm(
            lmks_2d - q_image[lmks_3d_ind[0, :], :2])**2  #68 landmarks
        E_reg = np.linalg.norm(al_id / self.std_id)**2 + np.linalg.norm(
            al_alb / self.std_alb)**2 + np.linalg.norm(
                al_exp / self.std_exp)**2

        #Gauss Newton minimizes sum of squares of residuals. E(the objective function) is considered as sum of squares of residuals. For calculating the jacobian we only need the residuals not their squares
        E_con_r = np.sqrt(
            1 / self.no_of_face_pxls) * nd.norm(I_rend - self.I_in)
        E_lan_r = np.sqrt(w_l / self.no_of_lmks) * nd.norm(
            lmks_2d - q_image[lmks_3d_ind[0, :], :2], axis=1)
        E_reg_r = np.sqrt(w_r) * nd.concat(al_id / self.std_id,
                                           al_alb / self.std_alb,
                                           al_exp / self.std_exp,
                                           dim=0)

        return nd.concat(E_con_r, E_lan_r, E_reg_r[:, 0], dim=0)
Example #5
0
def faba(epoch, gradients, net, lr, byz, f=0):

    param_list = [
        nd.concat(*[xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients
    ]
    param_list = byz(epoch, param_list, net, f, lr, np.arange(len(param_list)))
    faba_client_list = np.arange(len(param_list))
    dist = np.zeros(len(param_list))
    G0 = nd.mean(nd.concat(*param_list, dim=1), axis=-1, keepdims=1)
    for i in range(f):
        for j in range(len(param_list)):
            dist[j] = (nd.norm(G0 - param_list[j]) *
                       (faba_client_list[j] >= 0)).asscalar()
        client = int(np.argmax(dist))
        faba_client_list[client] = -1
        dist[client] = 0
        G0 = (G0 * (len(param_list) - i) -
              param_list[client]) / (len(param_list) - i - 1)

    idx = 0
    for j, (param) in enumerate(net.collect_params().values()):
        if param.grad_req == 'null':
            continue
        param.set_data(
            param.data() -
            lr * G0[idx:(idx + param.data().size)].reshape(param.data().shape))
        idx += param.data().size

    del param_list
    del dist
    del G0
    return -np.sort(-faba_client_list)
Example #6
0
    def add_split(x, leaf, p_tau):
        center = leaf.parent['node'].center.data()
        radius = leaf.parent['node'].radius.data()
        tau = p_tau + nd.random.exponential(radius**-1)
        while 1:
            s = nd.random.normal(shape=(2, x.shape[-1]))
            s = s / nd.norm(s, axis=-1, keepdims=True)
            r = nd.random.uniform(low=nd.array([0]), high=radius)
            r = r * nd.random.uniform()**(1 / 3)
            if nd.sign(s[0][-1]) > 0:
                weight = s[0]
                bias = nd.dot(s[0], -1 * r * (s[1] + center))
                y = nd.sign(nd.dot(x, weight) + bias)
                if nd.abs(nd.sum(y)) != len(y):
                    break

        split = Split(weight=weight,
                      bias=bias,
                      sharpness=3 / radius,
                      tau=tau,
                      decision=leaf.parent['decision'],
                      side=leaf.parent['side'])
        tree.splits.add(split)
        leaf.parent['node'].child['decision'] = split
        leaf.parent['decision'] = split
Example #7
0
def get_dis(data, mean, dis_method='iou'):
    if dis_method == 'iou':
        # data = bs*(w, h) ndarray
        # mean = 1*(w, h) ndarray
        # |--------|-----|
        # | inters |     |
        # |--------|     |  h
        # |              |
        # |--------------|
        #        w
        data_w, data_h = data.split(num_outputs=2, axis=-1)
        mean_w, mean_h = mean

        inters_w = nd.minimum(data_w, mean_w)
        inters_h = nd.minimum(data_h, mean_h)
        inters = inters_w * inters_h

        data_area = data_w * data_h
        mean_area = mean_w * mean_h
        ious = inters / (data_area + mean_area - inters)
        distance = 1 / ious

    elif dis_method == 'L2':
        vec = data - mean
        distance = nd.norm(vec, ord=2, axis=-1).reshape((-1, 1))

    return distance
Example #8
0
def test_periodic_kernel_compute(
    x1, x2, amplitude, length_scale, frequency
) -> None:
    tol = 1e-5
    batch_size = amplitude.shape[0]
    history_length_1 = x1.shape[0]
    history_length_2 = x2.shape[0]
    num_features = x1.shape[1]
    x1 = x1.reshape(batch_size, history_length_1, num_features)
    x2 = x2.reshape(batch_size, history_length_2, num_features)
    amplitude = amplitude.reshape(batch_size, 1, 1)
    length_scale = length_scale.reshape(batch_size, 1, 1)
    frequency = frequency.reshape(batch_size, 1, 1)
    periodic = PeriodicKernel(amplitude, length_scale, frequency)

    exact = nd.zeros((batch_size, history_length_1, history_length_2))
    for i in range(history_length_1):
        for j in range(history_length_2):
            val = (
                2
                * (
                    nd.sin(frequency * math.pi * (x1[:, i, :] - x2[:, j, :]))
                    / length_scale
                )
                ** 2
            )
            exact[:, i, j] = (amplitude * nd.exp(-val)).reshape(-1)
    res = periodic.kernel_matrix(x1, x2)
    assert nd.norm(res - exact) < tol
Example #9
0
def test_radial_basis_function_kernel(
    x1, x2, amplitude, length_scale, exact
) -> None:
    tol = 1e-5
    batch_size = amplitude.shape[0]
    history_length_1 = x1.shape[0]
    history_length_2 = x2.shape[0]
    num_features = x1.shape[1]
    if batch_size > 1:
        x1 = nd.tile(x1, reps=(batch_size, 1, 1))
        x2 = nd.tile(x2, reps=(batch_size, 1, 1))
        for i in range(1, batch_size):
            x1[i, :, :] = (i + 1) * x1[i, :, :]
            x2[i, :, :] = (i - 3) * x2[i, :, :]
    else:
        x1 = x1.reshape(batch_size, history_length_1, num_features)
        x2 = x2.reshape(batch_size, history_length_2, num_features)
    amplitude = amplitude.reshape(batch_size, 1, 1)
    length_scale = length_scale.reshape(batch_size, 1, 1)
    rbf = RBFKernel(amplitude, length_scale)

    exact = amplitude * nd.exp(-0.5 * exact / length_scale ** 2)

    res = rbf.kernel_matrix(x1, x2)
    assert nd.norm(exact - res) < tol
Example #10
0
def test_periodic_kernel(x1, x2, amplitude, length_scale, exact) -> None:
    tol = 1e-5
    batch_size = amplitude.shape[0]
    history_length_1 = x1.shape[0]
    history_length_2 = x2.shape[0]
    num_features = x1.shape[1]
    if batch_size > 1:
        x1 = nd.tile(x1, reps=(batch_size, 1, 1))
        x2 = nd.tile(x2, reps=(batch_size, 1, 1))
        for i in range(1, batch_size):
            x1[i, :, :] = (i + 1) * x1[i, :, :]
            x2[i, :, :] = (i - 3) * x2[i, :, :]
    else:
        x1 = x1.reshape(batch_size, history_length_1, num_features)
        x2 = x2.reshape(batch_size, history_length_2, num_features)
    amplitude = amplitude.reshape(batch_size, 1, 1)
    length_scale = length_scale.reshape(batch_size, 1, 1)
    frequency = 1 / 24 * nd.ones_like(length_scale)
    periodic = PeriodicKernel(amplitude, length_scale, frequency)

    exact = amplitude * nd.exp(
        -2 * nd.sin(frequency * math.pi * nd.sqrt(exact))**2 / length_scale**2)

    res = periodic.kernel_matrix(x1, x2)
    assert nd.norm(exact - res) < tol
Example #11
0
def mmd_loss(x, y, ctx_model, t=0.1, kernel='diffusion'):
    '''
    computes the mmd loss with information diffusion kernel
    :param x: batch_size x latent dimension
    :param y:
    :param t:
    :return:
    '''
    eps = 1e-6
    n,d = x.shape
    if kernel == 'tv':
        sum_xx = nd.zeros(1, ctx=ctx_model)
        for i in range(n):
            for j in range(i+1, n):
                sum_xx = sum_xx + nd.norm(x[i] - x[j], ord=1)
        sum_xx = sum_xx / (n * (n-1))

        sum_yy = nd.zeros(1, ctx=ctx_model)
        for i in range(y.shape[0]):
            for j in range(i+1, y.shape[0]):
                sum_yy = sum_yy + nd.norm(y[i] - y[j], ord=1)
        sum_yy = sum_yy / (y.shape[0] * (y.shape[0]-1))

        sum_xy = nd.zeros(1, ctx=ctx_model)
        for i in range(n):
            for j in range(y.shape[0]):
                sum_xy = sum_xy + nd.norm(x[i] - y[j], ord=1)
        sum_yy = sum_yy / (n * y.shape[0])
    else:
        qx = nd.sqrt(nd.clip(x, eps, 1))
        qy = nd.sqrt(nd.clip(y, eps, 1))
        xx = nd.dot(qx, qx, transpose_b=True)
        yy = nd.dot(qy, qy, transpose_b=True)
        xy = nd.dot(qx, qy, transpose_b=True)

        def diffusion_kernel(a, tmpt, dim):
            # return (4 * np.pi * tmpt)**(-dim / 2) * nd.exp(- nd.square(nd.arccos(a)) / tmpt)
            return nd.exp(- nd.square(nd.arccos(a)) / tmpt)

        off_diag = 1 - nd.eye(n, ctx=ctx_model)
        k_xx = diffusion_kernel(nd.clip(xx, 0, 1-eps), t, d-1)
        k_yy = diffusion_kernel(nd.clip(yy, 0, 1-eps), t, d-1)
        k_xy = diffusion_kernel(nd.clip(xy, 0, 1-eps), t, d-1)
        sum_xx = (k_xx * off_diag).sum() / (n * (n-1))
        sum_yy = (k_yy * off_diag).sum() / (n * (n-1))
        sum_xy = 2 * k_xy.sum() / (n * n)
    return sum_xx + sum_yy - sum_xy
def getfake(samples, dimensions, epsilon):
    wfake = nd.random_normal(shape=(dimensions))   # fake weight vector for separation
    bfake = nd.random_normal(shape=(1))            # fake bias
    wfake = wfake / nd.norm(wfake)                 # rescale to unit length

    # making some linearly separable data, simply by chosing the labels accordingly
    X = nd.zeros(shape=(samples, dimensions))
    Y = nd.zeros(shape=(samples))
    i = 0
    while (i < samples):
        tmp = nd.random_normal(shape=(1,dimensions))
        margin = nd.dot(tmp, wfake) + bfake
        if (nd.norm(tmp).asscalar() < 3) & (abs(margin.asscalar()) > epsilon):
            X[i,:] = tmp[0]
            Y[i] = 1 if margin.asscalar() > 0 else -1
            i += 1
    return X, Y
Example #13
0
def read_data(graph_path: str, features_path: str,
              apply_kernel: bool) -> Graph:
    vertex_map: Dict[str, Vertex] = {}
    class_map: Dict[str, int] = {}
    vertices: List[Vertex] = []
    features: List[List[float]] = []

    # Read features
    with open(features_path) as fin:
        for line in fin:
            # The format is "id feature* class"
            data = line.rstrip().split()
            clazz = class_map.setdefault(data[-1], len(class_map))
            features_raw = [float(x) for x in data[1:-1]]
            features.append(features_raw)
            vertex = Vertex(None, [], clazz, len(vertices))
            vertices.append(vertex)
            vertex_map[data[0]] = vertex

    if apply_kernel:

        def sqr(x):
            return x * x

        n = len(features)
        kernels = [[] for _ in range(n)]
        # feature_indices = random.choices(range(len(features[0])), k=100)
        nd_features = [nd.array(arr, ctx=data_ctx) for arr in features]
        # indices = random.choices(range(n), k=100)
        indices = range(n)
        for u in range(n):
            for v in indices:
                dif = nd_features[u] - nd_features[v]
                norm = float(nd.norm(dif).asscalar())
                res = math.exp(-0.5 * sqr(norm))
                # res = math.exp(-0.5 * norm)
                # print(norm, )
                kernels[u].append(100 * res)
            # print(kernels[u])
        features = kernels

    for v in vertices:
        v.features = nd.array(features[v.id], ctx=data_ctx).reshape(-1, 1)

    # Read graph
    with open(graph_path) as fin:
        for line in fin:
            (u, v) = [vertex_map[x] for x in line.rstrip().split()]
            u.neighbors.append(v)
            v.neighbors.append(u)

    num_features = len(vertices[0].features)
    for v in vertices:
        v.neighbors.append(v)
        v.degree = len(v.neighbors)
        assert len(v.features) == num_features

    return Graph(vertices, num_features, len(class_map))
def normalize(x, axis=-1):
    """Normalizing to unit length along the specified dimension.
    Args:
      x: pytorch Variable
    Returns:
      x: pytorch Variable, same shape as input
    """
    x = 1. * x / (nd.norm(x, axis=axis, keepdim=True) + 1e-12)
    return x
Example #15
0
def f(a):
    b = a * 2
    while nd.norm(b).asscalar() < 1000:
        b = b * 2
    if nd.sum(b).asscalar() > 0:
        c = b
    else:
        c = 100 * b
    return c
Example #16
0
def getfake(samples, dimensions, epsilon):
    wfake = nd.random_normal(shape=(dimensions))  # fake weight vector for separation
    bfake = nd.random_normal(shape=(1))  # fake bias
    wfake = wfake / nd.norm(wfake)  # rescale to unit length

    # making some linearly separable data, simply by chosing the labels accordingly
    X = nd.zeros(shape=(samples, dimensions))
    Y = nd.zeros(shape=(samples))

    i = 0
    while (i < samples):
        tmp = nd.random_normal(shape=(1, dimensions))
        margin = nd.dot(tmp, wfake) + bfake
        if (nd.norm(tmp).asscalar() < 3) & (abs(margin.asscalar()) > epsilon):
            X[i, :] = tmp
            Y[i] = 2 * (margin > 0) - 1
            i += 1
    return X, Y
Example #17
0
def get_fake(samples, dimensions, epsilon):
    wfake = nd.random_normal(shape=(dimensions))
    bfake = nd.random_normal(shape=(1))
    wfake = wfake / nd.norm(wfake)

    X = nd.zeros(shape=(samples, dimensions))
    Y = nd.zeros(shape=(samples))

    i = 0
    while i < samples:
        tmp = nd.random_normal(shape=(1, dimensions))
        margin = nd.dot(tmp, wfake) + bfake
        if (nd.norm(tmp).asscalar() < 3) and (abs(
                margin.asscalar() > epsilon)):
            X[i, :] = tmp
            Y[i] = 1 if margin.ascalar() > 0 else -1
            i += 1
    return X, Y
Example #18
0
def local_krum(param_list, f):

    k = len(param_list) - f - 2
    dist = mx.nd.zeros((len(param_list), len(param_list)))
    for i in range(0, len(param_list)):
        for j in range(0, i):
            dist[i][j] = nd.norm(param_list[i] - param_list[j])
            dist[j][i] = dist[i][j]
    sorted_dist = mx.nd.sort(dist)
    sum_dist = mx.nd.sum(sorted_dist[:, :k + 1], axis=1)
    model_selected = mx.nd.argmin(sum_dist).asscalar().astype(int)

    return model_selected
Example #19
0
def lambda_max(epoch, v, net, f, lr):  #(m, c, params, global_param):

    if (f == 0):
        return 0.0
    m = len(v)
    dist = mx.nd.zeros((m, m))
    for i in range(0, m):
        for j in range(0, i):
            dist[i][j] = nd.norm(v[i] - v[j]) * lr
            dist[j][i] = dist[i][j]
    sorted_benign_dist = mx.nd.sort(dist[f:, f:])
    sum_benign_dist = mx.nd.sum(sorted_benign_dist[:, :(m - f - 1)], axis=1)
    min_distance = mx.nd.min(sum_benign_dist).asscalar()

    dist_global = mx.nd.zeros(m - f)
    for i in range(f, m):
        dist_global[i - f] = nd.norm(v[i]) * lr
    max_global_dist = mx.nd.max(dist_global).asscalar()
    scale = 1.0 / (len(v[0]))
    return (
        math.sqrt(scale) /
        (m - 2 * f - 1)) * min_distance + math.sqrt(scale) * max_global_dist
    def generate_weighted_disp_masks(self, flow, _LARGE_DISP):
        flow_mag = nd.norm(flow, axis=1, keepdims=True)
        flow_mag = nd.broadcast_div(flow_mag, _LARGE_DISP)

        flow_mag = nd.broadcast_minimum(flow_mag,
                                        nd.ones((1), ctx=flow_mag.context))

        small_disp_masks = 1.0 - flow_mag
        large_disp_masks = flow_mag

        stacked_mask = nd.concat(small_disp_masks, large_disp_masks, dim=1)

        return stacked_mask
Example #21
0
def main():
    x = nd.arange(20)
    A = x.reshape(shape=(5, 4))
    print(A)
    print('A[2, 3] = ', A[2, 3])
    print('A[2, :] = ', A[2, :])
    print('A[:, 3] = ', A[:, 3])
    print('A.T = ', A.T)

    X = nd.arange(24).reshape(shape=(2, 3, 4))
    print(X)

    u = nd.array([1, 2, 4, 8])
    v = nd.ones_like(u) * 2
    print('u + v = ', u + v)
    print('u - v = ', u - v)
    print('u * v = ', u * v)
    print('u / v = ', u / v)

    B = nd.ones_like(A) * 3
    print('B = ', B)
    print('A + B = ', A + B)
    print('A * B = ', A * B)

    a = 2
    x = nd.ones(3)
    y = nd.zeros(3)
    print(x.shape)
    print(y.shape)
    print((a * x).shape)
    print((a * x + y).shape)

    print(nd.sum(u))
    print(nd.sum(A))

    print(nd.mean(A))
    print(nd.sum(A) / A.size)

    print(nd.dot(u, v))
    print(nd.sum(u * v))

    print(nd.dot(A, u))

    A = nd.ones(shape=(3, 4))
    B = nd.ones(shape=(4, 5))
    print(nd.dot(A, B))

    # L2 norm
    print(nd.norm(u))
    # L1 norm
    print(nd.sum(nd.abs(u)))
Example #22
0
    def retrain_enc(self, l2_alpha=0.1):
        docs = self.data.get_documents(key='train')
        with autograd.record():
            ### reconstruction phase ###
            y_onehot_u = self.Enc(docs)
            y_onehot_u_softmax = nd.softmax(y_onehot_u)
            x_reconstruction_u = self.Dec(y_onehot_u_softmax)

            logits = nd.log_softmax(x_reconstruction_u)
            loss_reconstruction = nd.mean(nd.sum(- docs * logits, axis=1))
            loss_reconstruction = loss_reconstruction + l2_alpha * nd.mean(nd.norm(y_onehot_u, ord=1, axis=1))
            loss_reconstruction.backward()

        self.optimizer_enc.step(1)
        return loss_reconstruction.asscalar()
Example #23
0
    def sample(self, v0, min_steps=1, max_steps=100):
        # (v0, h0)   -> (v1, h1)   -> (v2, h2)   -> ... -> (vt, ht)
        # (vc0, hc0) -> (vc1, hc1) -> ... -> (vct, hct)
        # Init: (v0, h0) = (vc0, hc0)
        # Iter: (v1, h1, vc0, hc0) -> (v2, h2, vc1, hc1) -> ...
        # Stop: (vt, ht) = (vct, hct)
        vc = v0
        hc = self.sample_h_given_v(vc)
        v = self.sample_v_given_h(hc)
        h = self.sample_h_given_v(v)

        discarded = 0
        vhist = [v]
        vchist = []

        for i in range(max_steps):
            vc, hc, v, h, disc = self.max_coup(vc, hc, v, h, max_try=10)
            discarded += disc
            vhist.append(v)
            vchist.append(vc)
            if i >= min_steps - 1 and nd.norm(v - vc).asscalar() == 0 and nd.norm(h - hc).asscalar() == 0:
                break

        return nd.stack(*vhist), nd.stack(*vchist), discarded
Example #24
0
def autogradV2():
    a = nd.random_normal(shape=3)
    a.attach_grad()

    with autograd.record():
        b = a * 2
        while (nd.norm(b) < 1000).asscalar():
            b = b * 2

        if (mx.nd.sum(b) > 0).asscalar():
            c = b
        else:
            c = 100 * b

    head_gradient = nd.array([0.01, 1.0, .1])
    c.backward(head_gradient)
    print(a.grad)
Example #25
0
def multiply_norms(gradients, f):
    euclidean_distance = []
    for i, x in enumerate(gradients):
        norms = [nd.norm(p) for p in x]
        norm_product = 1
        for each in norms:
            norm_product *= float(each.asnumpy()[0])
        euclidean_distance.append((i, norm_product))
    # euclidean_distance = sorted(euclidean_distance, key=lambda x: x[1], reverse=True)
    # output = []
    # for i in range(f, len(gradients)):
    #     output.append(gradients[euclidean_distance[i][0]])
    output = [
        gradients[x[0]] for x in sorted(
            euclidean_distance, key=lambda x: x[1], reverse=True)[f:]
    ]
    return output
Example #26
0
def cgc_by_layer(gradients, f):
    layer_list = []
    for layer in range(len(gradients[0])):
        grads = [x[layer] for x in gradients]
        norms = [nd.norm(p) for p in grads]
        euclidean_distance = [(i, norms[i]) for i in range(len(grads))]
        layer_output = [
            grads[x[0]] for x in sorted(
                euclidean_distance, key=lambda x: x[1], reverse=True)[f:]
        ]
        layer_list.append(layer_output)

    output = []
    for i in range(len(gradients) - f):
        grad = []
        for layer in range(len(gradients[0])):
            grad.append(layer_list[layer][i])
        output.append(grad)
    return output
def kmeans(in_dataSet, k, e):
    numSamples, dim = in_dataSet.shape
    dataSet = nd.zeros((numSamples, dim+1), ctx=ctx)
    dataSet[:, 0:dim] = in_dataSet
    centroids = initCentroids(dataSet, k)
    for _ in range(e):
        for i in range(numSamples):
            minDist = 100000.0
            minIndex = 0
            for j in range(k):
                distance = nd.norm(centroids[j, :] - dataSet[i, :])
                if distance < minDist:
                    minDist = distance
                    minIndex = j
            dataSet[i][-1] = minIndex
        for j in range(k):
            outdataSet = dataSet.asnumpy()
            pointsInCluster = outdataSet[outdataSet[:, -1] == j, :-1]
            centroids[j, :-1] = np.mean(pointsInCluster, axis=0)
    return dataSet
Example #28
0
def normalize(x, p=2, axis=1, eps=1e-12):
    r"""Performs :math:`L_p` normalization of inputs over specified dimension.

    For a tensor :attr:`input` of sizes :math:`(n_0, ..., n_{dim}, ..., n_k)`, each
    :math:`n_{dim}` -element vector :math:`v` along dimension :attr:`dim` is transformed as

    .. math::
        v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}.

    With the default arguments it uses the Euclidean norm over vectors along dimension
     :math:`1` for normalization.

    Args:
        x: input ndarray of any shape
        ord (float): the exponent value in the norm formulation. Default: 2
        dim (int): the dimension to reduce. Default: 1
        eps (float): small value to avoid division by zero. Default: 1e-12
    """
    denom = nd.clip(nd.norm(x, ord=p, axis=axis, keepdims=True), eps,
                    float('inf'))
    return x / denom
Example #29
0
def extract_feat(ids, data, model):
    ctx = try_gpu()
    if len(ctx) > 1:
        _data_list = gluon.utils.split_and_load(data=data, ctx_list=ctx)
        _id_list = gluon.utils.split_and_load(data=ids, ctx_list=ctx)
    else:
        _data_list = [data.as_in_context(ctx[0])]
        _id_list = [ids.as_in_context(ctx[0])]
    # print(_id_list)
    data_list = []
    id_list = []

    for _ids, _data in zip(_id_list, _data_list):
        feats = model(_data)
        feats = map(lambda x: x / nd.norm(x), feats[:, :, 0, 0])
        feats = [v.expand_dims(axis=0) for v in feats]
        feats = nd.concatenate(feats)
        id_list.append(_ids)
        data_list.append(feats)
    id_list = nd.concatenate(id_list)
    data_list = nd.concatenate(data_list)
    return id_list, data_list
Example #30
0
def bulyan(epoch, gradients, net, lr, byz, f=0):

    param_list = [
        nd.concat(*[xx.reshape((-1, 1)) for xx in x], dim=0) for x in gradients
    ]
    param_list = byz(epoch, param_list, net, f, lr, np.arange(len(param_list)))

    k = len(param_list) - f - 2
    dist = mx.nd.zeros((len(param_list), len(param_list)))
    for i in range(0, len(param_list)):
        for j in range(0, i):
            dist[i][j] = nd.norm(param_list[i] - param_list[j])
            dist[j][i] = dist[i][j]

    sorted_dist = mx.nd.sort(dist)
    sum_dist = mx.nd.sum(sorted_dist[:, :k + 1], axis=1)
    bulyan_list = []
    bul_client_list = np.ones(len(param_list)) * (-1)
    for i in range(len(param_list) - 2 * f):
        chosen = int(nd.argmin(sum_dist).asscalar())
        sum_dist[chosen] = 10**8
        bul_client_list[i] = chosen
        bulyan_list.append(param_list[chosen])
        for j in range(len(sum_dist)):
            sum_dist[j] = sum_dist[j] - dist[j][chosen]
    sorted_array = nd.sort(nd.concat(*bulyan_list, dim=1), axis=-1)
    trim_nd = nd.mean(sorted_array[:, f:(len(bulyan_list) - f)],
                      axis=-1,
                      keepdims=1)

    idx = 0
    for j, (param) in enumerate(net.collect_params().values()):
        if param.grad_req == 'null':
            continue
        param.set_data(
            param.data() - lr *
            trim_nd[idx:(idx + param.data().size)].reshape(param.data().shape))
        idx += param.data().size
    return trim_nd, bul_client_list
#gluonloss=gluon.loss.L2Loss()
gluonloss=gluon.loss.KLDivLoss(from_logits=False)
smoothed_loss="null"
for e in range(epochs):
    #This loss function produces the one already done if it is the best, or else the closest improvement

    for i,(data,labels) in enumerate(train_data):
        data=data.as_in_context(model_ctx)
        labels=labels.as_in_context(model_ctx)
        with autograd.record():
            output=net(data)
        scores=make_batch_scores(output,labels,symbols)
        avgscore=nd.mean(scores,axis=(1,2),keepdims=True)
        #print(avgscore)
        scores-=avgscore
        scores/=nd.norm(scores)
        with autograd.record():
            loss=gluonloss(output,scores)
            if(i%100==0):
                print(i)
                print("data")
                print(data)
                print("output")
                print(output.argmax(axis=2))
        loss.backward()
        trainer.step(data.shape[0])
        if(smoothed_loss=="null"):
            smoothed_loss=nd.mean(loss).asscalar()
        else:
            smoothed_loss=smoothed_loss*smoothing+(1-smoothing)*nd.mean(loss).asscalar()
        #print(nd.mean(loss).asscalar())