Example #1
0
def test_square():
    inp = np.ones((INT_OVERFLOW, 2))
    inp[-1, -1] = 3
    inp.attach_grad()
    with mx.autograd.record():
        out = np.square(inp)
        out.backward()
    assert out.shape == inp.shape
    assert out[-1, -1] == 9
    assert inp.grad.shape == inp.shape
    assert inp.grad[-1, -1] == 6
Example #2
0
def evaluator(network, inter_matrix, test_data, ctx):
    scores = []
    for values in inter_matrix:
        feat = gluon.utils.split_and_load(values, ctx, even_split=False)
        scores.extend([network(i).asnumpy() for i in feat])
    recons = np.array([item for sublist in scores for item in sublist])
    # Calculate the test RMSE.
    rmse = np.sqrt(
        np.sum(np.square(test_data - np.sign(test_data) * recons)) /
        np.sum(np.sign(test_data)))
    return float(rmse)
Example #3
0
    def forward(self, length_predictions, labels):
        """
        Returns MSE loss.

        :param length_predictions: Length predictions. Shape: (batch_size,).
        :param labels: Targets. Shape: (batch_size,).
        :return: MSE loss of length predictions of the batch.
        """
        # (batch_size,)
        loss = (self.weight / 2) * np.square(length_predictions - labels)
        # (1,)
        loss = np.sum(loss)
        num_samples = np.sum(np.ones_like(length_predictions))
        return loss, num_samples
Example #4
0
def mse_loss(x1, x2):
    loss = np.square(x1 - x2).mean()
    if loss is None:
        return 0
    else:
        return loss
Example #5
0
def global_norm(ndarrays: List[np.ndarray]) -> float:
    # accumulate in a list, as item() is blocking and this way we can run the norm calculation in parallel.
    norms = [
        np.square(np.linalg.norm(arr)) for arr in ndarrays if arr is not None
    ]
    return sqrt(sum(norm.item() for norm in norms))
Example #6
0
def style_loss(Y_hat, gram_Y):
    return np.square(gram(Y_hat) - gram_Y).mean()
Example #7
0
def content_loss(Y_hat, Y):
    return np.square(Y_hat, Y).mean()
 def style_loss(y_hat, gram_y):
     return np.square(StyleTransferGF.gram(y_hat) - gram_y).mean()
 def content_loss(y_hat, y):
     return np.square(y_hat, y).mean()