def test_data_iter(self): sys.path.append(patch_path('..')) data_dir_path = patch_path('../demo/data/coco') logging.basicConfig(level=logging.DEBUG) from mxnet_vqa.data.coco import train_test_split max_lines = 100000 train_data, test_data, meta = train_test_split( data_dir_path=data_dir_path, answer_mode='int', question_mode='add', batch_size=64, max_lines_retrieved=max_lines) print('meta:', meta) for i, batch in enumerate(train_data): if i == 10: break batch_images = batch.data[0] batch_questions = batch.data[1] batch_answers = batch.label[0] print('batch images: ', batch_images.shape, 'batch questions', batch_questions.shape, 'batch answers: ', batch_answers.shape)
def main(): sys.path.append(patch_path('..')) data_dir_path = patch_path('data/coco') model_dir_path = patch_path('models') answer_mode = 'int' question_mode = 'add' batch_size = 64 epochs = 100 logging.basicConfig(level=logging.DEBUG) ctx = mx.gpu(0) from mxnet_vqa.data.coco import train_test_split train_data, test_data, meta_data = train_test_split( data_dir_path=data_dir_path, max_lines_retrieved=100000, answer_mode=answer_mode, ctx=ctx, question_mode=question_mode, batch_size=batch_size) from mxnet_vqa.library.vqa1 import VQANet net = VQANet(model_ctx=ctx) net.input_mode_question = question_mode net.input_mode_answer = answer_mode net.version = '1' net.fit(data_train=train_data, data_eva=test_data, meta=meta_data, model_dir_path=model_dir_path, epochs=epochs)
def main(): sys.path.append(patch_path('..')) data_dir_path = patch_path('data/coco') model_dir_path = patch_path('models') answer_mode = 'int' question_mode = 'concat' batch_size = 64 epochs = 100 # set it to -1 if u want to use the longest question sequence length, but my # graphics card is not good enough for large max_question_seq_length so i used # 10 instead max_question_seq_length = 12 logging.basicConfig(level=logging.DEBUG) ctx = mx.gpu(0) from mxnet_vqa.data.coco import train_test_split train_data, test_data, meta_data = train_test_split(data_dir_path=data_dir_path, max_lines_retrieved=100000, answer_mode=answer_mode, ctx=ctx, max_sequence_length=max_question_seq_length, question_mode=question_mode, batch_size=batch_size) from mxnet_vqa.library.vqa4 import VQANet net = VQANet(model_ctx=ctx) net.input_mode_question = question_mode net.input_mode_answer = answer_mode net.version = '1' net.fit(data_train=train_data, data_eva=test_data, meta=meta_data, model_dir_path=model_dir_path, epochs=epochs)