Example #1
0
	ynew = f(xnew)
	
	# print("xnew: ", len(xnew), xnew)
	
	print("lenTimeSeries = ", len(ynew))

	return xnew.tolist(), ynew.tolist()

pathData = "data/GR-Emerald-3X_GR-Emerald-3X.csv"

# dataShape1, _, _ = myCrpFunctions.readCSVFileByShape(pathData, 2, 1, 2)

dataByShape = [[],[],[],[],[]]

for i in range(5):
	allTimeseries, _, _ = myCrpFunctions.readCSVFileByShape(pathData, i+1, 1, 2)
	for timeseries in allTimeseries:
		dataByShape[i] = allTimeseries

data = dataByShape[4][2][10:15]
print(len(data))

folderOut = "out24032019/RP/"
myCrpFunctions.createFolder(folderOut)

nPredict = []


# a = [1, 5, 3, 6, 5]
# b = [1, 2 ,3 ,4 ,5 ]
Example #2
0
    pathFolder = "1301_smoothListTriangle/"
    # checkRecall(pathFolder)

    fileName = [
        "RBA-3P_RBA-3P.csv", "RBA-6P_RBA-6P.csv", "RBA-12PST4_RBA-12PST4.csv",
        "RUBY-1X_RUBY-1X_1.csv", "RUBY-4X_RUBY-4X_1.csv", "TN-3X_TN-3X.csv"
    ]

    path = [("data/" + name) for name in fileName]

    shape = 2
    indexColOfShape = 3

    indexColFeature = 2

    allTrainSet, minOfTrain, maxOfTrain = myCrpFunctions.readCSVFileByShape(
        path[0], shape, indexColFeature, indexColOfShape)

    for i in range(1, 5):
        allTrainSetI, minOfTrainI, maxOfTrainI = myCrpFunctions.readCSVFileByShape(
            path[i], shape, indexColFeature, indexColOfShape)
        allTrainSet += allTrainSetI
        if (minOfTrainI < minOfTrain):
            minOfTrain = minOfTrainI
        if (maxOfTrainI > maxOfTrain):
            maxOfTrain = maxOfTrainI

    # dataTest = myCrpFunctions.readCSVFile(path[5], indexColFeature)

    dataTest, testShape = myCrpFunctions.readCSVFileForTest(
        path[5], indexColFeature)
    shapePredict = [0 for i in range(len(testShape))]
Example #3
0
File: crp.py Project: Trongha/myCrp
if (__name__ == "__main__"):

    fileName = [
        "RBA-3P_RBA-3P.csv", "RBA-6P_RBA-6P.csv", "RBA-12PST4_RBA-12PST4.csv",
        "RUBY-1X_RUBY-1X_1.csv", "RUBY-4X_RUBY-4X_1.csv", "TN-3X_TN-3X.csv"
    ]

    path = [("data/" + name) for name in fileName]

    shape = 2
    indexColOfShape = 3

    indexColFeature = 2

    dataTrain, minOfTrain, maxOfTrain = myCrpFunctions.readCSVFileByShape(
        path[1], shape, indexColFeature, indexColOfShape)
    dataTest = myCrpFunctions.readCSVFile(path[4], indexColFeature)

    if (minOfTrain > min(dataTest)):
        minOfNorm = min(dataTest)
    else:
        minOfNorm = minOfTrain

    if maxOfTrain < max(dataTest):
        maxOfNorm = max(dataTest)
    else:
        maxOfNorm = maxOfTrain

    trainSet = myCrpFunctions.ConvertSetNumber(dataTrain,
                                               minOfSet=minOfNorm,
                                               maxOfSet=maxOfNorm)