for j in numpy.arange(nbPixel): data2[i][j] -= cov[j][i] data2[ data2==0. ] = numpy.float('nan') myTools.plot2D(data2) #plt.hist(data[data!=0.],bins=100) #plt.hist(numpy.diag(data),bins=100) #plt.show() if (nbPixel==nbBin1D__): xi1D = xi1D_[:,1] else: xi1D = myTools.convert2DTo1D(xi2D_[:,:,1], 50,100) xi1D_2 = numpy.dot(data,xi1D) plt.errorbar(numpy.arange(nbPixel),xi1D,fmt='o',label='Before correction') plt.errorbar(numpy.arange(nbPixel),xi1D_2,fmt='o',label='After correction') myTools.deal_with_plot(False,False,True) plt.show() if (nbPixel==nbBin1D__): xi1D_[:,1] = xi1D_2 plotXi(0) plotXi(1) plotXi(2) pathToCamb = '/home/gpfs/manip/mnt0607/bao/hdumasde/Results/Txt/CAMB_2_4/xi-z2.4.dat' fitCamb(xi1D_,pathToCamb,0)
def saveListRealMocks(ni,nj,distortion=False): ''' - ni: Box - nj: Simu - distortion: Flag to use or not the distortion matrix (defalut=False) Usage example: cov = numpy.load('/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Results_NicolasDistortion/xi_delta_QSO_result_cov_1D.npy') cor = myTools.getCorrelationMatrix(cov) myTools.plot2D(cor) a = myTools.plotCovar([cor],['a']) ''' ### Where to get correlation path = '/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Box_00' ### Where to save the results pathToSave = '/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Results_NicolasDistortionWithDistortion/xi_delta_QSO_result_' list1D = numpy.zeros( shape=(nbBin1D__,ni*nj) ) list2D = numpy.zeros( shape=(nbBin2D__,ni*nj) ) listMu = numpy.zeros( shape=(nbBin1D__*nbBinM__,ni*nj) ) listWe = numpy.zeros( shape=(nbBin1D__,3,ni*nj) ) listMultipol = numpy.zeros( shape=(nbBin1D__,5,ni*nj) ) for i in numpy.arange(ni): for j in numpy.arange(nj): tmpPath = path + str(i)+'/Simu_00'+str(j)+'/Results_NicolasDistortion/xi_delta_QSO_' try: xi1D, xi2D, xiMu, xiWe = loadData(tmpPath+'Mu_LYA_QSO.txt',tmpPath+'2D_LYA_QSO.txt') list1D[:,i*10+j] = xi1D[:,1] list2D[:,i*10+j] = xi2D[:,:,1].flatten() listMu[:,i*10+j] = xiMu[:,:,2].flatten() listWe[:,:,i*10+j] = xiWe[:,:,1] listMultipol[:,:,i*10+j] = plotMultipol(xiMu)[:,:,1] except: print ' ERROR:: ', tmpPath if (distortion): tmp_command = " echo " + str(i) + " " + str(j) subprocess.call(tmp_command, shell=True) ### distortion matrix 1D data = numpy.loadtxt(tmpPath+'distortionMatrix_1D_LYA_QSO.txt') list1D[:,i*10+j] = numpy.dot(data,xi1D[:,1]) #myTools.plot2D(data) #myTools.plot1D([xi1D[:,1],list1D[:,i*10+j]],'-','-','-',['before','after']) ### distortion matrix 2D data = numpy.loadtxt(tmpPath+'distortionMatrix_2D_LYA_QSO.txt') xi1D = myTools.convert2DTo1D(xi2D[:,:,1], nbBinX2D__,nbBinY2D__) list2D[:,i*10+j] = numpy.dot(data,xi1D) numpy.save(pathToSave+'1D',list1D) numpy.save(pathToSave+'2D',list2D) numpy.save(pathToSave+'Mu',listMu) numpy.save(pathToSave+'We',listWe) numpy.save(pathToSave+'Multipol',listMultipol) cov1D = numpy.cov(list1D) cov2D = numpy.cov(list2D) covMu = numpy.cov(listMu) numpy.save(pathToSave+'cov_1D',cov1D) numpy.save(pathToSave+'cov_2D',cov2D) numpy.save(pathToSave+'cov_Mu',covMu) return