def test_progress_indicator(self): print( "If the printed output of this test is incorrect, the test will fail. No need to check visually.", end='') test_cases = (50, 51, 49, 1, 2, 3, 1000, 333, 101) p = txt.Progress(100) for maxi in test_cases: m, cent = self.check_progress_indicator(p, maxi) self.assertEqual(m, maxi, msg="Incorrect number of steps.") self.assertEqual(cent, 100, msg="Incorrect number of steps.")
# folder at each run named 'log/<timestamp>/'. Two sets of data are saved so that # you can compare training and validation curves visually in Tensorboard. timestamp = str(math.trunc(time.time())) summary_writer = tf.summary.FileWriter("log/" + timestamp + "-training") validation_writer = tf.summary.FileWriter("log/" + timestamp + "-validation") # Init for saving models. They will be saved into a directory named 'checkpoints'. # Only the last checkpoint is kept. if not os.path.exists("checkpoints"): os.mkdir("checkpoints") saver = tf.train.Saver(max_to_keep=1) # for display: init the progress bar DISPLAY_FREQ = 50 _50_BATCHES = DISPLAY_FREQ * BATCHSIZE * SEQLEN progress = txt.Progress(DISPLAY_FREQ, size=111+2, msg="Training on next "+str(DISPLAY_FREQ)+" batches") # init istate = np.zeros([BATCHSIZE, INTERNALSIZE*NLAYERS]) # initial zero input state init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) step = 0 # training loop for x, y_, epoch in txt.rnn_minibatch_sequencer(codetext, BATCHSIZE, SEQLEN, nb_epochs=20): # train on one minibatch feed_dict = {X: x, Y_: y_, Hin: istate, lr: learning_rate, pkeep: dropout_pkeep, batchsize: BATCHSIZE} _, y, ostate, smm = sess.run([train_step, Y, H, summaries], feed_dict=feed_dict)
def main(_): # load data, either shakespeare, or the Python source of Tensorflow itself shakedir = FLAGS.text_dir # shakedir = "../tensorflow/**/*.py" codetext, valitext, bookranges = txt.read_data_files(shakedir, validation=True) # display some stats on the data epoch_size = len(codetext) // (FLAGS.train_batch_size * FLAGS.seqlen) txt.print_data_stats(len(codetext), len(valitext), epoch_size) # # the model (see FAQ in README.md) # lr = tf.placeholder(tf.float32, name='lr') # learning rate pkeep = tf.placeholder(tf.float32, name='pkeep') # dropout parameter batchsize = tf.placeholder(tf.int32, name='batchsize') # inputs X = tf.placeholder(tf.uint8, [None, None], name='X') # [ BATCHSIZE, FLAGS.seqlen ] Xo = tf.one_hot(X, ALPHASIZE, 1.0, 0.0) # [ BATCHSIZE, FLAGS.seqlen, ALPHASIZE ] # expected outputs = same sequence shifted by 1 since we are trying to predict the next character Y_ = tf.placeholder(tf.uint8, [None, None], name='Y_') # [ BATCHSIZE, FLAGS.seqlen ] Yo_ = tf.one_hot(Y_, ALPHASIZE, 1.0, 0.0) # [ BATCHSIZE, FLAGS.seqlen, ALPHASIZE ] # input state Hin = tf.placeholder(tf.float32, [None, INTERNALSIZE * NLAYERS], name='Hin') # [ BATCHSIZE, INTERNALSIZE * NLAYERS] # using a NLAYERS=3 layers of GRU cells, unrolled FLAGS.seqlen=30 times # dynamic_rnn infers FLAGS.seqlen from the size of the inputs Xo onecell = rnn.GRUCell(INTERNALSIZE) dropcell = rnn.DropoutWrapper(onecell, input_keep_prob=pkeep) multicell = rnn.MultiRNNCell([dropcell] * NLAYERS, state_is_tuple=False) multicell = rnn.DropoutWrapper(multicell, output_keep_prob=pkeep) Yr, H = tf.nn.dynamic_rnn(multicell, Xo, dtype=tf.float32, initial_state=Hin) # Yr: [ BATCHSIZE, FLAGS.seqlen, INTERNALSIZE ] # H: [ BATCHSIZE, INTERNALSIZE*NLAYERS ] # this is the last state in the sequence H = tf.identity(H, name='H') # just to give it a name # Softmax layer implementation: # Flatten the first two dimension of the output [ BATCHSIZE, FLAGS.seqlen, ALPHASIZE ] => [ BATCHSIZE x FLAGS.seqlen, ALPHASIZE ] # then apply softmax readout layer. This way, the weights and biases are shared across unrolled time steps. # From the readout point of view, a value coming from a cell or a minibatch is the same thing Yflat = tf.reshape( Yr, [-1, INTERNALSIZE]) # [ BATCHSIZE x FLAGS.seqlen, INTERNALSIZE ] Ylogits = layers.linear( Yflat, ALPHASIZE) # [ BATCHSIZE x FLAGS.seqlen, ALPHASIZE ] Yflat_ = tf.reshape( Yo_, [-1, ALPHASIZE]) # [ BATCHSIZE x FLAGS.seqlen, ALPHASIZE ] loss = tf.nn.softmax_cross_entropy_with_logits( logits=Ylogits, labels=Yflat_) # [ BATCHSIZE x FLAGS.seqlen ] loss = tf.reshape(loss, [batchsize, -1]) # [ BATCHSIZE, FLAGS.seqlen ] Yo = tf.nn.softmax(Ylogits, name='Yo') # [ BATCHSIZE x FLAGS.seqlen, ALPHASIZE ] Y = tf.argmax(Yo, 1) # [ BATCHSIZE x FLAGS.seqlen ] Y = tf.reshape(Y, [batchsize, -1], name="Y") # [ BATCHSIZE, FLAGS.seqlen ] train_step = tf.train.AdamOptimizer(lr).minimize(loss) # stats for display seqloss = tf.reduce_mean(loss, 1) batchloss = tf.reduce_mean(seqloss) accuracy = tf.reduce_mean( tf.cast(tf.equal(Y_, tf.cast(Y, tf.uint8)), tf.float32)) loss_summary = tf.summary.scalar("batch_loss", batchloss) acc_summary = tf.summary.scalar("batch_accuracy", accuracy) summaries = tf.summary.merge([loss_summary, acc_summary]) # Init Tensorboard stuff. This will save Tensorboard information into a different # folder at each run named 'log/<timestamp>/'. Two sets of data are saved so that # you can compare training and validation curves visually in Tensorboard. timestamp = str(math.trunc(time.time())) summary_writer = tf.summary.FileWriter( os.path.join(FLAGS.summaries_dir, timestamp + "-training")) validation_writer = tf.summary.FileWriter( os.path.join(FLAGS.summaries_dir, timestamp + "-validation")) # Init for saving models. They will be saved into a directory named 'checkpoints'. # Only the last checkpoint is kept. if not os.path.exists(FLAGS.checkpoint_dir): os.mkdir(FLAGS.checkpoint_dir) saver = tf.train.Saver(max_to_keep=1) # for display: init the progress bar DISPLAY_FREQ = 50 _50_BATCHES = DISPLAY_FREQ * FLAGS.train_batch_size * FLAGS.seqlen progress = txt.Progress(DISPLAY_FREQ, size=111 + 2, msg="Training on next " + str(DISPLAY_FREQ) + " batches") # init istate = np.zeros([FLAGS.train_batch_size, INTERNALSIZE * NLAYERS]) # initial zero input state init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) step = 0 # training loop for x, y_, epoch in txt.rnn_minibatch_sequencer(codetext, FLAGS.train_batch_size, FLAGS.seqlen, nb_epochs=1000): # train on one minibatch feed_dict = { X: x, Y_: y_, Hin: istate, lr: FLAGS.learning_rate, pkeep: FLAGS.dropout_pkeep, batchsize: FLAGS.train_batch_size } _, y, ostate, smm = sess.run([train_step, Y, H, summaries], feed_dict=feed_dict) # save training data for Tensorboard summary_writer.add_summary(smm, step) # display a visual validation of progress (every 50 batches) if step % _50_BATCHES == 0: feed_dict = { X: x, Y_: y_, Hin: istate, pkeep: 1.0, batchsize: FLAGS.train_batch_size } # no dropout for validation y, l, bl, acc = sess.run([Y, seqloss, batchloss, accuracy], feed_dict=feed_dict) txt.print_learning_learned_comparison(x, y, l, bookranges, bl, acc, epoch_size, step, epoch) # run a validation step every 50 batches # The validation text should be a single sequence but that's too slow (1s per 1024 chars!), # so we cut it up and batch the pieces (slightly inaccurate) # tested: validating with 5K sequences instead of 1K is only slightly more accurate, but a lot slower. if step % _50_BATCHES == 0 and len(valitext) > 0: VALI_SEQLEN = 1 * 1024 # Sequence length for validation. State will be wrong at the start of each sequence. bsize = len(valitext) // VALI_SEQLEN txt.print_validation_header(len(codetext), bookranges) vali_x, vali_y, _ = next( txt.rnn_minibatch_sequencer(valitext, bsize, VALI_SEQLEN, 1)) # all data in 1 batch vali_nullstate = np.zeros([bsize, INTERNALSIZE * NLAYERS]) feed_dict = { X: vali_x, Y_: vali_y, Hin: vali_nullstate, pkeep: 1.0, # no dropout for validation batchsize: bsize } ls, acc, smm = sess.run([batchloss, accuracy, summaries], feed_dict=feed_dict) txt.print_validation_stats(ls, acc) # save validation data for Tensorboard validation_writer.add_summary(smm, step) # display a short text generated with the current weights and biases (every 150 batches) if step // 3 % _50_BATCHES == 0: txt.print_text_generation_header() ry = np.array([[txt.convert_from_alphabet(ord("K"))]]) rh = np.zeros([1, INTERNALSIZE * NLAYERS]) for k in range(1000): ryo, rh = sess.run([Yo, H], feed_dict={ X: ry, pkeep: 1.0, Hin: rh, batchsize: 1 }) rc = txt.sample_from_probabilities( ryo, topn=10 if epoch <= 1 else 2) print(chr(txt.convert_to_alphabet(rc)), end="") ry = np.array([[rc]]) txt.print_text_generation_footer() # save a checkpoint (every 500 batches) if step // 10 % _50_BATCHES == 0: saver.save(sess, FLAGS.checkpoint_dir + '/rnn_train_' + timestamp, global_step=step) # display progress bar progress.step(reset=step % _50_BATCHES == 0) # loop state around istate = ostate step += FLAGS.train_batch_size * FLAGS.seqlen
def fit(self, data, epochs=1000, displayFreq=50, genFreq=150, saveFreq=5000, verbosity=2): progress = txt.Progress(displayFreq, size=111+2, msg="Training on next "+str(displayFreq)+" batches") tfStuff = self.tfStuff valitext = data.valitext # todo: check if batchSize != data.batchSize or if seqLen != data.seqLen (if so, I think we need to raise an exception?) firstEpoch = self.curEpoch lastEpoch = firstEpoch + epochs isFirstStepInThisFitCall = True try: with tfStuff.graph.as_default(): #with tf.name_scope(self.scopeName): with tf.variable_scope(self.fullName, reuse=tf.AUTO_REUSE): sess = tfStuff.sess # training loop for x, y_, epoch, batch in txt.rnn_minibatch_sequencer(data.codetext, self.batchSize, self.seqLen, nb_epochs=epochs, startBatch=self.curBatch, startEpoch=self.curEpoch): nSteps = self.step // (self.batchSize*self.seqLen) # train on one minibatch feed_dict = {tfStuff.X: x, tfStuff.Y_: y_, tfStuff.Hin: tfStuff.istate, tfStuff.lr: self.learningRate, tfStuff.pkeep: self.dropoutPkeep, tfStuff.batchsize: self.batchSize} _, y, ostate = sess.run([tfStuff.train_step, tfStuff.Y, tfStuff.H], feed_dict=feed_dict) # log training data for Tensorboard display a mini-batch of sequences (every 50 batches) if nSteps % displayFreq == 0 or isFirstStepInThisFitCall: feed_dict = {tfStuff.X: x, tfStuff.Y_: y_, tfStuff.Hin: tfStuff.istate, tfStuff.pkeep: 1.0, tfStuff.batchsize: self.batchSize} # no dropout for validation y, l, bl, acc, smm = sess.run([tfStuff.Y, tfStuff.seqloss, tfStuff.batchloss, tfStuff.accuracy, tfStuff.summaries], feed_dict=feed_dict) txt.print_learning_learned_comparison(x, y, l, data.bookranges, bl, acc, data.epoch_size, self.step, epoch, lastEpoch, verbosity=verbosity) self.tbStuff.summary_writer.add_summary(smm, self.step) # run a validation step every 50 batches # The validation text should be a single sequence but that's too slow (1s per 1024 chars!), # so we cut it up and batch the pieces (slightly inaccurate) # tested: validating with 5K sequences instead of 1K is only slightly more accurate, but a lot slower. if (nSteps % displayFreq == 0 or isFirstStepInThisFitCall) and len(data.valitext) > 0: VALI_seqLen = 1*1024 # Sequence length for validation. State will be wrong at the start of each sequence. bsize = len(data.valitext) // VALI_seqLen if verbosity >= 1: txt.print_validation_header(len(data.codetext), data.bookranges) vali_x, vali_y, _, _ = next(txt.rnn_minibatch_sequencer(data.valitext, bsize, VALI_seqLen, 1)) # all data in 1 batch vali_nullstate = np.zeros([bsize, self.internalSize * self.nLayers]) feed_dict = {tfStuff.X: vali_x, tfStuff.Y_: vali_y, tfStuff.Hin: vali_nullstate, tfStuff.pkeep: 1.0, # no dropout for validation tfStuff.batchsize: bsize} ls, acc, smm = sess.run([tfStuff.batchloss, tfStuff.accuracy, tfStuff.summaries], feed_dict=feed_dict) if verbosity >= 1: txt.print_validation_stats(ls, acc) # save validation data for Tensorboard self.tbStuff.validation_writer.add_summary(smm, self.step) # display a short text generated with the current weights and biases (every 150 batches) if nSteps % genFreq == 0 or isFirstStepInThisFitCall: txt.print_text_generation_header() ry = np.array([[txt.convert_from_alphabet(ord("K"))]]) rh = np.zeros([1, self.internalSize * self.nLayers]) for k in range(1000): ryo, rh = sess.run([tfStuff.Yo, tfStuff.H], feed_dict={tfStuff.X: ry, tfStuff.pkeep: 1.0, tfStuff.Hin: rh, tfStuff.batchsize: 1}) rc = txt.sample_from_probabilities(ryo, topn=10 if epoch <= 1 else 2) print(chr(txt.convert_to_alphabet(rc)), end="") ry = np.array([[rc]]) txt.print_text_generation_footer() if isFirstStepInThisFitCall: for i in range(nSteps % displayFreq): progress.step() isFirstStepInThisFitCall = False # save a checkpoint (every 500 batches) if nSteps % saveFreq == 0: self.save(alreadyInGraph=True) # display progress bar progress.step(reset=nSteps % displayFreq == 0) # loop state around tfStuff.istate = ostate self.step += self.batchSize * self.seqLen self.curEpoch = epoch self.curBatch = batch except KeyboardInterrupt as e: print("\npressed ctrl-c, saving") self.save()