Example #1
0
def get_summary_scores(algo, docs, refs, summary_size):
    language = 'english'
    summary = ''
    if algo == 'UB1':
        summarizer = ExtractiveUpperbound(language)
        summary = summarizer(docs, refs, summary_size, ngram_type=1)
    elif algo == 'UB2':
        summarizer = ExtractiveUpperbound(language)
        summary = summarizer(docs, refs, summary_size, ngram_type=2)
    elif algo == 'ICSI':
        summarizer = SumeWrap(language)
        summary = summarizer(docs, summary_size)
    else:
        doc_string = u'\n'.join([u'\n'.join(doc_sents) for doc_sents in docs])
        parser = PlaintextParser.from_string(doc_string, Tokenizer(language))
        stemmer = Stemmer(language)
        if algo == 'LSA':
            summarizer = LsaSummarizer(stemmer)
        if algo == 'KL':
            summarizer = KLSummarizer(stemmer)
        if algo == 'Luhn':
            summarizer = LuhnSummarizer(stemmer)
        if algo == 'LexRank':
            summarizer = LexRankSummarizer(stemmer)
        if algo == 'TextRank':
            summarizer = TextRankSummarizer(stemmer)

        summarizer.stop_words = frozenset(stopwords.words(language))
        summary = summarizer(parser.document, summary_size)
    hyps, refs = map(list, zip(*[[' '.join(summary), ' '.join(model)] for model in refs]))
    hyp = str(hyps[0]).split()
    hyp = ' '.join(hyp[:summary_size])
    ref = str(refs[0])
    score = get_rouge_score(hyp, ref)
    return score['ROUGE-1']['r'], score['ROUGE-2']['r'], score['ROUGE-L']['r'], score['ROUGE-SU4']['r']
Example #2
0
def evaluate(net, vocab, data_iter, train_next):
    net.eval()
    criterion = myLoss()
    loss, r1, r2, rl, rsu = .0, .0, .0, .0, .0
    for blog in tqdm(data_iter):
        sents, targets, sim_matrix, doc_lens, sents_content, summary = vocab.make_features(
            blog, args)
        sents, targets, sim_matrix = Variable(sents), Variable(
            targets), Variable(sim_matrix)
        if use_cuda:
            sents = sents.cuda()
            targets = targets.cuda()
            sim_matrix = sim_matrix.cuda()
        probs = net(sents, doc_lens, sim_matrix)
        loss += criterion(probs, targets).data.item()
        hyp = greedy_selection(probs.tolist(), sents_content,
                               len(summary.split()))
        score = get_rouge_score(hyp, summary)
        r1 += score['ROUGE-1']['r']
        r2 += score['ROUGE-2']['r']
        rl += score['ROUGE-L']['r']
        rsu += score['ROUGE-SU4']['r']
    blog_num = len(data_iter)
    loss = loss / blog_num
    r1 = r1 / blog_num
    r2 = r2 / blog_num
    rl = rl / blog_num
    rsu = rsu / blog_num
    if train_next:
        net.train()
    return loss, r1, r2, rl, rsu
Example #3
0
def evaluate(net, vocab, data_iter, train_next):
    net.eval()
    criterion = nn.KLDivLoss(size_average=False, reduce=True)
    loss, r1, r2, rl, rsu = .0, .0, .0, .0, .0
    for blog in tqdm(data_iter):
        sents, targets, summary, sents_content, opt = vocab.make_features(blog, args)
        sents, targets = Variable(sents), Variable(targets)
        if use_cuda:
            sents = sents.cuda()
            targets = targets.cuda()
        probs = net(sents, opt)
        loss += criterion(probs, targets).data.item()
        hyp = sents_selection(probs.tolist(), sents_content, len(summary.split()))
        score = get_rouge_score(hyp, summary)
        r1 += score['ROUGE-1']['r']
        r2 += score['ROUGE-2']['r']
        rl += score['ROUGE-L']['r']
        rsu += score['ROUGE-SU4']['r']
    blog_num = len(data_iter)
    loss = loss / blog_num
    r1 = r1 / blog_num
    r2 = r2 / blog_num
    rl = rl / blog_num
    rsu = rsu / blog_num
    if train_next:
        net.train()
    return loss, r1, r2, rl, rsu
Example #4
0
def evaluate(net, vocab, data_iter, train_next):  # train_next指明接下来是否要继续训练
    net.eval()
    criterion = nn.MSELoss()
    loss, r1, r2, rl, rsu = .0, .0, .0, .0, .0  # rouge-1,rouge-2,rouge-l,都使用recall值(长度限定为原摘要长度)
    batch_num = .0
    blog_num = .0
    for i, batch in enumerate(tqdm(data_iter)):
        # 计算loss
        features, targets, sents_content, summaries, doc_nums, doc_lens = vocab.make_features(
            batch, args)
        features, targets = Variable(features), Variable(targets.float())
        if use_cuda:
            features = features.cuda()
            targets = targets.cuda()
        probs = net(features, doc_nums, doc_lens)
        batch_num += 1
        loss += criterion(probs, targets).data.item()
        probs_start = 0  # 当前blog对应的probs起始下标
        doc_lens_start = 0  # 当前blog对应的doc_lens起始下标
        sents_start = 0  # 当前blog对应的sents_content起始下标
        for i in range(0, args.batch_size):
            sents_num = 0
            for j in range(doc_lens_start, doc_lens_start + doc_nums[i]):
                sents_num += doc_lens[j]
            cur_probs = probs[probs_start:probs_start + sents_num]
            cur_sents = sents_content[sents_start:sents_start + sents_num]
            probs_start = probs_start + sents_num
            doc_lens_start = doc_lens_start + doc_nums[i]
            sents_start = sents_start + sents_num
            if use_cuda:
                cur_probs = cur_probs.cpu()
            cur_probs = list(cur_probs.detach().numpy())
            sorted_index = list(np.argsort(cur_probs))  # cur_probs顺序排序后对应的下标
            sorted_index.reverse()
            ref = summaries[i].strip()
            ref_len = len(ref.split())
            hyp = re_rank(cur_sents, cur_probs, ref_len)
            score = get_rouge_score(hyp, ref)
            r1 += score['ROUGE-1']['r']
            r2 += score['ROUGE-2']['r']
            rl += score['ROUGE-L']['r']
            rsu += score['ROUGE-SU4']['r']
            blog_num += 1

    loss = loss / batch_num
    r1 = r1 / blog_num
    r2 = r2 / blog_num
    rl = rl / blog_num
    rsu = rsu / blog_num
    if train_next:  # 接下来要继续训练,将网络设成'train'状态
        net.train()
    return loss, r1, r2, rl, rsu
Example #5
0
def evaluate(net, my_loss, vocab, data_iter,
             train_next):  # train_next指明接下来是否要继续训练
    net.eval()
    my_loss.eval()
    loss, r1, r2, rl, rsu = .0, .0, .0, .0, .0
    blog_num = float(len(data_iter))
    f = open('tmp.txt', 'w')
    for i, blog in enumerate(tqdm(data_iter)):
        sents, sent_targets, doc_lens, doc_targets, events, event_targets, event_tfs, event_prs, event_lens, event_sent_lens, sents_content, summary = vocab.make_tensors(
            blog, args)
        if use_cuda:
            sents = sents.cuda()
            sent_targets = sent_targets.cuda()
            events = events.cuda()
            event_targets = event_targets.cuda()
            event_tfs = event_tfs.cuda()
        # sent_probs = net(sents, doc_lens)
        sent_probs, event_probs = net(sents, doc_lens, events, event_lens,
                                      event_sent_lens, event_tfs,
                                      event_targets, sent_targets, False)

        loss += F.mse_loss(event_probs, event_targets).data.item()
        for a, b in zip(event_probs, event_targets):
            f.write(str(a.data.item()) + '\t' + str(b.data.item()) + '\n')
        f.write('\n')

        # loss += my_loss(sent_probs, sent_targets).data.item()
        # loss += my_loss(sent_probs, event_probs, sent_targets, event_targets).data.item()
        # loss += my_loss(sent_probs, doc_probs, event_probs, sent_targets, doc_targets, event_targets).data.item()
        probs = sent_probs.tolist()
        ref = summary.strip()
        ref_len = len(ref.split())
        hyp = mmr(sents_content, probs, ref_len)
        score = get_rouge_score(hyp, ref)
        r1 += score['ROUGE-1']['r']
        r2 += score['ROUGE-2']['r']
        rl += score['ROUGE-L']['r']
        rsu += score['ROUGE-SU4']['r']
    f.close()
    loss = loss / blog_num
    r1 = r1 / blog_num
    r2 = r2 / blog_num
    rl = rl / blog_num
    rsu = rsu / blog_num
    if train_next:  # 接下来要继续训练,将网络设成'train'状态
        net.train()
        my_loss.train()
    return loss, r1, r2, rl, rsu
Example #6
0
        for i, doc in enumerate(blog['documents']):
            tmp_f = open(tmp_dir + str(i), 'w')
            for sent in doc['text']:
                tmp_f.write(sent)
                tmp_f.write('\n')
            tmp_f.close()

        for m in methods:
            os.system(
                'java -jar %s -T 2 -input %s -output %s -L 2 -n %d -m %d -stop stopword'
                % (jar_path, tmp_dir, tmp_out, 2 * sum_size, m))
            f = open(tmp_out, 'r')
            hyp = ' '.join(str(f.read()).strip().split()[:sum_size])
            f.close()
            score = get_rouge_score(hyp, ref)
            r1, r2, rl, rsu = score['ROUGE-1']['r'], score['ROUGE-2'][
                'r'], score['ROUGE-L']['r'], score['ROUGE-SU4']['r']
            print methods_name[m], r1, r2, rl, rsu
            recall[m]['rouge-1'] += r1
            recall[m]['rouge-2'] += r2
            recall[m]['rouge-l'] += rl
            recall[m]['rouge-su*'] += rsu

    print('Final Results:')
    for m in methods:
        recall[m]['rouge-1'] /= len(os.listdir(data_dir))
        recall[m]['rouge-2'] /= len(os.listdir(data_dir))
        recall[m]['rouge-l'] /= len(os.listdir(data_dir))
        recall[m]['rouge-su*'] /= len(os.listdir(data_dir))
        print methods_name[m], recall[m]['rouge-1'], recall[m][
Example #7
0
def main():
    print('Loading data...')
    for fn in os.listdir(valid_dir):
        f = open(os.path.join(valid_dir, fn), 'r')
        valid_data.append(Blog(json.load(f)))
        f.close()
    with open(pre_dir + 'valid_pre.txt', 'r') as f:
        for line in f.readlines():
            valid_pre.append(float(line))
    for fn in os.listdir(test_dir):
        f = open(os.path.join(test_dir, fn), 'r')
        test_data.append(Blog(json.load(f)))
        f.close()
    with open(pre_dir + 'test_pre.txt', 'r') as f:
        for line in f.readlines():
            test_pre.append(float(line))

    print('Evaluating valid set...')
    r1, r2, rl, rsu = .0, .0, .0, .0
    start = 0
    blog_num = .0
    for blog in tqdm(valid_data):
        sents = []
        for doc in blog.docs:
            sents.extend(doc)
        cur_pre = valid_pre[start:start + len(sents)]
        start = start + len(sents)
        ref_len = len(blog.summary.strip().split())
        hyp = re_rank(sents, cur_pre, ref_len)
        score = get_rouge_score(hyp, blog.summary)
        r1 += score['ROUGE-1']['r']
        r2 += score['ROUGE-2']['r']
        rl += score['ROUGE-L']['r']
        rsu += score['ROUGE-SU4']['r']
        blog_num += 1
    r1 = r1 / blog_num
    r2 = r2 / blog_num
    rl = rl / blog_num
    rsu = rsu / blog_num
    print(r1, r2, rl, rsu)

    print('Evaluating test set...')
    r1, r2, rl, rsu = .0, .0, .0, .0
    start = 0
    blog_num = .0
    for blog in tqdm(test_data):
        sents = []
        for doc in blog.docs:
            sents.extend(doc)
        cur_pre = test_pre[start:start + len(sents)]
        start = start + len(sents)
        ref_len = len(blog.summary.strip().split())
        hyp = re_rank(sents, cur_pre, ref_len)
        score = get_rouge_score(hyp, blog.summary)
        r1 += score['ROUGE-1']['r']
        r2 += score['ROUGE-2']['r']
        rl += score['ROUGE-L']['r']
        rsu += score['ROUGE-SU4']['r']
        blog_num += 1
    r1 = r1 / blog_num
    r2 = r2 / blog_num
    rl = rl / blog_num
    rsu = rsu / blog_num
    print(r1, r2, rl, rsu)