Example #1
0
def test_My_Random_Forest_Classifier_predict():
    # Object Declarations
    # Tests with N = 3, M = 2, F = 2 and seed = 1
    rand_forest_test = MyRandomForestClassifier(3, 2, 2, 1)
    table = MyPyTable()

    # Variable Assignment and Declaration
    table.data = interview_table
    table.column_names = interview_header

    y_train, X_train = [], []
    for inst in interview_table:
        y_train.append(inst[-1])
        X_train.append(inst[:-1])

    # Sets X_test
    X_test = [["Junior", "Java", "yes", "no"],
              ["Junior", "Java", "yes", "yes"]]

    # Tests on the Interview Dataset
    rand_forest_test.header = interview_header[:-1]
    rand_forest_test.fit(X_train, y_train)
    y_predicted = rand_forest_test.predict(X_test)

    print("y_predicted:", y_predicted)

    # Trace Test

    assert y_predicted == ['True', 'False']
Example #2
0
def confusionCategorical(yTrue, yTest, header, categories):
    table = MyPyTable()
    table.column_names = header
    table.data = []

    for val in categories:
        newRow = [val]
        for i in range(len(header) - 1):
            newRow.append(0)
        table.data.append(newRow)

    for i in range(len(yTrue)):
        rowIndex = categories.index(yTrue[i])
        colIndex = header.index(yTest[i])
        table.data[rowIndex][colIndex] += 1

    for row in table.data:
        total = 0
        for i in range(1, len(categories) + 1):
            total += row[i]
        row[len(categories) + 1] = total

    for i in range(len(table.data)):
        if table.data[i][len(categories) + 1] != 0:
            recognition = table.data[i][i +
                                        1] / table.data[i][len(categories) + 1]
            table.data[i][len(header) - 1] = round(100 * recognition, 2)
    return table
Example #3
0
def test_My_Random_Forest_Classifier_fit():
    # Object Declarations
    # Tests with N = 3, M = 2, F = 2 and seed = 0
    rand_forest_test = MyRandomForestClassifier(3, 2, 2, 0)
    table = MyPyTable()

    # Variable Assignment and Declaration
    table.data = interview_table
    table.column_names = interview_header

    X_test = interview_table
    y_train = table.get_column("interviewed_well")

    # Tests on the Interview Dataset
    rand_forest_test.header = interview_header
    rand_forest_test.fit(X_test, y_train)

    trees = rand_forest_test.trees
Example #4
0
from mysklearn.mypytable import MyPyTable

# Object Declaration
table = MyPyTable()

# Trims the Dataset (Gets Data Based on City)
city = "Sydney"
table.load_from_file("weatherAUS.csv")
table.column_names[0] = 'Location'
names, tables = table.group_by("Location")

city_index = names.index(city)

print("\n")
for i in range(10):
    print(tables[city_index][i])

table.data = tables[city_index]

table.save_to_file(city+"_weather.csv")