def test_expect(constrain=False): G = marc_surr #XXX: uses the above-provided test function function_name = G.__name__ _mean = 06.0 #NOTE: SET THE mean HERE! _range = 00.5 #NOTE: SET THE range HERE! nx = 3 #NOTE: SET THE NUMBER OF 'h' POINTS HERE! ny = 3 #NOTE: SET THE NUMBER OF 'a' POINTS HERE! nz = 3 #NOTE: SET THE NUMBER OF 'v' POINTS HERE! h_lower = [60.0] a_lower = [0.0] v_lower = [2.1] h_upper = [105.0] a_upper = [30.0] v_upper = [2.8] lower_bounds = (nx * h_lower) + (ny * a_lower) + (nz * v_lower) upper_bounds = (nx * h_upper) + (ny * a_upper) + (nz * v_upper) bounds = (lower_bounds, upper_bounds) if debug: print(" model: f(x) = %s(x)" % function_name) print(" mean: %s" % _mean) print(" range: %s" % _range) print("..............\n") if debug: param_string = "[" for i in range(nx): param_string += "'x%s', " % str(i + 1) for i in range(ny): param_string += "'y%s', " % str(i + 1) for i in range(nz): param_string += "'z%s', " % str(i + 1) param_string = param_string[:-2] + "]" print(" parameters: %s" % param_string) print(" lower bounds: %s" % lower_bounds) print(" upper bounds: %s" % upper_bounds) # print(" ...") wx = [1.0 / float(nx)] * nx wy = [1.0 / float(ny)] * ny wz = [1.0 / float(nz)] * nz from mystic.math.measures import _pack, _unpack wts = _pack([wx, wy, wz]) weights = [i[0] * i[1] * i[2] for i in wts] if not constrain: constraints = None else: # impose a mean constraint on 'thickness' h_mean = (h_upper[0] + h_lower[0]) / 2.0 h_error = 1.0 v_mean = (v_upper[0] + v_lower[0]) / 2.0 v_error = 0.05 if debug: print("impose: mean[x] = %s +/- %s" % (str(h_mean), str(h_error))) print("impose: mean[z] = %s +/- %s" % (str(v_mean), str(v_error))) def constraints(x, w): from mystic.math.discrete import compose, decompose c = compose(x, w) E = float(c[0].mean) if not (E <= float(h_mean + h_error)) or not ( float(h_mean - h_error) <= E): c[0].mean = h_mean E = float(c[2].mean) if not (E <= float(v_mean + v_error)) or not ( float(v_mean - v_error) <= E): c[2].mean = v_mean return decompose(c)[0] from mystic.math.measures import mean, expectation, impose_expectation samples = impose_expectation(_mean, G, (nx,ny,nz), bounds, weights, \ tol=_range, constraints=constraints) smp = _unpack(samples, (nx, ny, nz)) if debug: from numpy import array # rv = [xi]*nx + [yi]*ny + [zi]*nz print("\nsolved [x]: %s" % array(smp[0])) print("solved [y]: %s" % array(smp[1])) print("solved [z]: %s" % array(smp[2])) #print("solved: %s" % smp) mx = mean(smp[0]) my = mean(smp[1]) mz = mean(smp[2]) if debug: print("\nmean[x]: %s" % mx) # weights are all equal print("mean[y]: %s" % my) # weights are all equal print("mean[z]: %s\n" % mz) # weights are all equal if constrain: assert almostEqual(mx, h_mean, tol=h_error) assert almostEqual(mz, v_mean, tol=v_error) Ex = expectation(G, samples, weights) cost = (Ex - _mean)**2 if debug: print("expect: %s" % Ex) print("cost = (E[G] - m)^2: %s" % cost) assert almostEqual(cost, 0.0, 0.01)
def __set_positions(self, positions): from mystic.math.measures import _unpack positions = _unpack(positions, self.pts) for i in range(len(positions)): self[i].positions = positions[i] return
def test_pack_unpack(): x = [[1, 2, 3], [4, 5], [6, 7, 8, 9]] n = [len(i) for i in x] assert x == _unpack(_pack(x), n) return
c = compose(x,w) E = float(c[0].mean) if not (E <= float(h_mean+h_error)) or not (float(h_mean-h_error) <= E): c[0].mean = h_mean E = float(c[2].mean) if not (E <= float(v_mean+v_error)) or not (float(v_mean-v_error) <= E): c[2].mean = v_mean return decompose(c)[0] from mystic.math.measures import mean, expectation, impose_expectation samples = impose_expectation((_mean,_range), G, (nx,ny,nz), bounds, \ weights, constraints=constraints) if debug: from numpy import array # rv = [xi]*nx + [yi]*ny + [zi]*nz smp = _unpack(samples,(nx,ny,nz)) print "\nsolved [x]: %s" % array( smp[0] ) print "solved [y]: %s" % array( smp[1] ) print "solved [z]: %s" % array( smp[2] ) #print "solved: %s" % smp print "\nmean[x]: %s" % mean(smp[0]) # weights are all equal print "mean[y]: %s" % mean(smp[1]) # weights are all equal print "mean[z]: %s\n" % mean(smp[2]) # weights are all equal Ex = expectation(G, samples, weights) print "expect: %s" % Ex print "cost = (E[G] - m)^2: %s" % (Ex - _mean)**2 # EOF
def test_pack_unpack(): x = [[1,2,3],[4,5],[6,7,8,9]] n = [len(i) for i in x] assert x == _unpack(_pack(x),n) return
def test_expect(constrain=False): G = marc_surr #XXX: uses the above-provided test function function_name = G.__name__ _mean = 06.0 #NOTE: SET THE mean HERE! _range = 00.5 #NOTE: SET THE range HERE! nx = 3 #NOTE: SET THE NUMBER OF 'h' POINTS HERE! ny = 3 #NOTE: SET THE NUMBER OF 'a' POINTS HERE! nz = 3 #NOTE: SET THE NUMBER OF 'v' POINTS HERE! h_lower = [60.0]; a_lower = [0.0]; v_lower = [2.1] h_upper = [105.0]; a_upper = [30.0]; v_upper = [2.8] lower_bounds = (nx * h_lower) + (ny * a_lower) + (nz * v_lower) upper_bounds = (nx * h_upper) + (ny * a_upper) + (nz * v_upper) bounds = (lower_bounds,upper_bounds) if debug: print(" model: f(x) = %s(x)" % function_name) print(" mean: %s" % _mean) print(" range: %s" % _range) print("..............\n") if debug: param_string = "[" for i in range(nx): param_string += "'x%s', " % str(i+1) for i in range(ny): param_string += "'y%s', " % str(i+1) for i in range(nz): param_string += "'z%s', " % str(i+1) param_string = param_string[:-2] + "]" print(" parameters: %s" % param_string) print(" lower bounds: %s" % lower_bounds) print(" upper bounds: %s" % upper_bounds) # print(" ...") wx = [1.0 / float(nx)] * nx wy = [1.0 / float(ny)] * ny wz = [1.0 / float(nz)] * nz from mystic.math.measures import _pack, _unpack wts = _pack([wx,wy,wz]) weights = [i[0]*i[1]*i[2] for i in wts] if not constrain: constraints = None else: # impose a mean constraint on 'thickness' h_mean = (h_upper[0] + h_lower[0]) / 2.0 h_error = 1.0 v_mean = (v_upper[0] + v_lower[0]) / 2.0 v_error = 0.05 if debug: print("impose: mean[x] = %s +/- %s" % (str(h_mean),str(h_error))) print("impose: mean[z] = %s +/- %s" % (str(v_mean),str(v_error))) def constraints(x, w): from mystic.math.discrete import compose, decompose c = compose(x,w) E = float(c[0].mean) if not (E <= float(h_mean+h_error)) or not (float(h_mean-h_error) <= E): c[0].mean = h_mean E = float(c[2].mean) if not (E <= float(v_mean+v_error)) or not (float(v_mean-v_error) <= E): c[2].mean = v_mean return decompose(c)[0] from mystic.math.measures import mean, expectation, impose_expectation samples = impose_expectation(_mean, G, (nx,ny,nz), bounds, weights, \ tol=_range, constraints=constraints) smp = _unpack(samples,(nx,ny,nz)) if debug: from numpy import array # rv = [xi]*nx + [yi]*ny + [zi]*nz print("\nsolved [x]: %s" % array( smp[0] )) print("solved [y]: %s" % array( smp[1] )) print("solved [z]: %s" % array( smp[2] )) #print("solved: %s" % smp) mx = mean(smp[0]) my = mean(smp[1]) mz = mean(smp[2]) if debug: print("\nmean[x]: %s" % mx) # weights are all equal print("mean[y]: %s" % my) # weights are all equal print("mean[z]: %s\n" % mz) # weights are all equal if constrain: assert almostEqual(mx, h_mean, tol=h_error) assert almostEqual(mz, v_mean, tol=v_error) Ex = expectation(G, samples, weights) cost = (Ex - _mean)**2 if debug: print("expect: %s" % Ex) print("cost = (E[G] - m)^2: %s" % cost) assert almostEqual(cost, 0.0, 0.01)
if not (E <= float(h_mean + h_error)) or not ( float(h_mean - h_error) <= E): c[0].mean = h_mean E = float(c[2].mean) if not (E <= float(v_mean + v_error)) or not ( float(v_mean - v_error) <= E): c[2].mean = v_mean return decompose(c)[0] from mystic.math.measures import mean, expectation, impose_expectation samples = impose_expectation((_mean,_range), G, (nx,ny,nz), bounds, \ weights, constraints=constraints) if debug: from numpy import array # rv = [xi]*nx + [yi]*ny + [zi]*nz smp = _unpack(samples, (nx, ny, nz)) print "\nsolved [x]: %s" % array(smp[0]) print "solved [y]: %s" % array(smp[1]) print "solved [z]: %s" % array(smp[2]) #print "solved: %s" % smp print "\nmean[x]: %s" % mean(smp[0]) # weights are all equal print "mean[y]: %s" % mean(smp[1]) # weights are all equal print "mean[z]: %s\n" % mean(smp[2]) # weights are all equal Ex = expectation(G, samples, weights) print "expect: %s" % Ex print "cost = (E[G] - m)^2: %s" % (Ex - _mean)**2 # EOF