Example #1
0
    def cluster_procedure(self):
        cl_array = []

        try:
            for i,scan in enumerate(self.points):
                if len(scan) < self.num_c:
                    continue

                Eps, cluster_labels= mt.dbscan(scan, self.num_c, eps=self.eps)
                max_label=int(np.amax(cluster_labels))      #(-1 is for outliers)

                #for every cluster/label (-> denotes a new cluster) 
                for k in range(1,max_label+1) :
                    filter = np.where(cluster_labels==k)

                    if len(filter) == 0:
                        continue

                    #get the x,y points of the specific cluster and create a <ScanCluster> instance
                    if (len(filter[0]) >= self.num_c):
                        x_ = zip(*scan)[0]
                        xCl = np.array(x_)[filter]

                        y_ = zip(*scan)[1]
                        yCl = np.array(y_)[filter]

                        cluster_ = ScanCluster(xCl, yCl, i)
                        cl_array.append(cluster_)

                if not (len(cl_array) == 0):
                    self.combine_clusters(cl_array)
                    cl_array = []

            print 'total number of clusters = ',len(self.clusters.boxes)

            return self.clusters
        except Exception as ex:
            print 'Exception in cluster procedure ',ex
            raise ex
Example #2
0
def clustering_procedure(buffer):
    global num_c, clusters_publisher, frame_id, publish_cluster_labels, cluster_labels_publisher

    if len(buffer.x) == 0:  #the area is empty!
        clustersmsg = ClustersMsg()
        clustersmsg.header.stamp = rospy.Time.now()
        clustersmsg.header.frame_id = frame_id
        clustersmsg.x = []
        clustersmsg.y = []
        clustersmsg.z = []

        #empty array_sizes means that anyone listening to this message won't loop through the data
        clustersmsg.array_sizes = []
        clustersmsg.num_clusters = []
        clusters_publisher.publish(clustersmsg)
    else:
        scan_time = buffer.scan_time

        clear_data = np.zeros((len(buffer.x), 3))

        for i in range(0, len(buffer.x)):
            clear_data[i] = ([buffer.x[i], buffer.y[i], buffer.z[i]])

        arr_sz = []
        x_ = []
        y_ = []
        z_ = []
        num_clusters = []

        if use_overlap:

            Eps, cluster_labels = mt.dbscan(clear_data, num_c)

            max_label = int(np.amax(cluster_labels))

            for k in range(1, max_label + 1):
                filter = np.where(cluster_labels == k)

                if len(filter[0]) > 40:
                    xk = np.array(buffer.x)[filter]
                    yk = np.array(buffer.y)[filter]
                    zk = np.array(buffer.z)[filter]
                    for i in range(0, len(xk)):
                        x_.append(xk[i])
                        y_.append(yk[i])
                        z_.append(zk[i])
                    arr_sz.append(len(xk))

        else:
            prev_clusters, cluster_label = oncl.onlineDBscan(clear_data, num_c)

            for cl in prev_clusters:

                if len(x_) == 0:
                    x_.append(cl.getPoints()[:, 0])
                    y_.append(cl.getPoints()[:, 1])
                    z_.append(cl.getPoints()[:, 2])
                else:
                    x_[0] = np.append(x_[0], cl.getPoints()[:, 0], axis=0)
                    y_[0] = np.append(y_[0], cl.getPoints()[:, 1], axis=0)
                    z_[0] = np.append(z_[0], cl.getPoints()[:, 2], axis=0)

                if len(num_clusters) == 0:
                    num_clusters = np.array(cl.getSizes())
                    arr_sz = [cl.getNumPts()]
                else:
                    num_clusters = np.append(num_clusters,
                                             cl.getSizes(),
                                             axis=0)
                    arr_sz.append(cl.getNumPts())

                    if 0 in arr_sz:
                        arr_sz = [i for i in arr_sz if i != 0]

            x_ = x_[0]
            y_ = y_[0]
            z_ = z_[0]

        clustersmsg = ClustersMsg()
        clustersmsg.header.stamp = rospy.Time.now()
        clustersmsg.header.frame_id = frame_id
        #clustersmsg.clusters = cluster_labels
        clustersmsg.x = x_
        clustersmsg.y = y_
        clustersmsg.z = z_
        clustersmsg.array_sizes = arr_sz
        clustersmsg.num_clusters = num_clusters
        clustersmsg.scan_time = scan_time
        clusters_publisher.publish(clustersmsg)

        if publish_cluster_labels:
            clusterlabelsmsg = ClusterLabelsMsg()
            clusterlabelsmsg.header = clustersmsg.header
            clusterlabelsmsg.cluster_labels = cluster_labels
            cluster_labels_publisher.publish(clusterlabelsmsg)
Example #3
0
def clustering_procedure(buffer):
    global num_c, clusters_publisher, frame_id, publish_cluster_labels, cluster_labels_publisher

    if len(buffer.x) == 0: #the area is empty!
        clustersmsg = ClustersMsg()
        clustersmsg.header.stamp = rospy.Time.now()
        clustersmsg.header.frame_id = frame_id
        clustersmsg.x = []
        clustersmsg.y = []
        clustersmsg.z = []

        #empty array_sizes means that anyone listening to this message won't loop through the data
        clustersmsg.array_sizes = []
        clustersmsg.num_clusters = []
        clusters_publisher.publish(clustersmsg)
    else:
        scan_time = buffer.scan_time

        clear_data = np.zeros((len(buffer.x), 3))

        for i in range(0,len(buffer.x)):
            clear_data[i] = ([buffer.x[i], buffer.y[i], buffer.z[i]])

        Eps, cluster_labels= mt.dbscan(clear_data, num_c)

        max_label=int(np.amax(cluster_labels))

        arr_sz = []
        x_ = []
        y_ = []
        z_ = []

        for k in range(1,max_label+1) :
            filter = np.where(cluster_labels==k)

            if len(filter[0])>40 :
                xk = np.array(buffer.x)[filter]
                yk = np.array(buffer.y)[filter]
                zk = np.array(buffer.z)[filter]
                for i in range(0, len(xk)):
                    x_.append(xk[i])
                    y_.append(yk[i])
                    z_.append(zk[i])
                arr_sz.append(len(xk))

        clustersmsg = ClustersMsg()
        clustersmsg.header.stamp = rospy.Time.now()
        clustersmsg.header.frame_id = frame_id
        #clustersmsg.clusters = cluster_labels
        clustersmsg.x = x_
        clustersmsg.y = y_
        clustersmsg.z = z_
        clustersmsg.array_sizes = arr_sz
        clustersmsg.num_clusters = []
        clustersmsg.scan_time = scan_time
        clusters_publisher.publish(clustersmsg)

        if publish_cluster_labels:
            clusterlabelsmsg = ClusterLabelsMsg()
            clusterlabelsmsg.header = clustersmsg.header
            clusterlabelsmsg.cluster_labels = cluster_labels
            cluster_labels_publisher.publish(clusterlabelsmsg)
Example #4
0
def cluster_train(clear_data):

    global cc, ccnames, kat, ax, fig1, wall_cart, fig3, hogs_temp
    global annotated_humans, annotated_obstacles, cc, point_clouds
    hogs=[]
    surfaces=[]
    ann=[]
    cluster_points=[]

    Eps, cluster_labels= dbscan(clear_data,3) # DB SCAN
    print  'eps = ',Eps,' , ',len(clear_data),' points in ', np.amax(cluster_labels),'clusters'
    #print 'Eps = ', Eps, ', outliers=' ,len(np.where(cluster_labels==-1))
    max_label=int(np.amax(cluster_labels))
    human=np.zeros(len(clear_data))

    [xi,yi,zi] = [clear_data[:,0] , clear_data[:,1] , clear_data[:,2]]
    fig1.clear()
    kat.clear()
    kat.plot(wall_cart[:,0],wall_cart[:,1])

    for k in range(1,max_label+1) :
        filter=np.where(cluster_labels==k)
        if len(filter[0])>timewindow :
            ax.scatter(xi[filter],yi[filter], zi[filter], 'z', 30,c=cc[k%12])
            fig1.add_axes(ax)
            #kat.scatter(xi[filter],yi[filter],s=20, c=cc[k-1])
            kat.scatter(xi[filter],yi[filter],s=20, c=cc[k%12]) 

	    [xk,yk,zk] = [xi[filter],yi[filter], zi[filter]]
	    point_clouds.append([xk,yk,zk])
            
            grid=gridfit(yi[filter], zi[filter], xi[filter], 16, 16) #extract surface
            grid=grid-np.amin(grid) #build surface grid
            fig3.clear()
            ax3 = fig3.add_subplot(1,1,1, projection='3d')
            X, Y = np.mgrid[:16, :16]
            surf = ax3.plot_surface(X, Y, grid, rstride=1, cstride=1, cmap=cm.gray,
                    linewidth=0, antialiased=False)
            surfaces.append(grid)
            hogs.append(hog(grid)) #extract features

	    #list_dist=euclidean_distance(hogs_temp, hog(grid))
            
            plt.pause(0.0001)
            
            #print ccnames[k-1],' cluster size :',len(filter[0]), 'Is',ccnames[k-1],'human? '
            print ccnames[k%12],' cluster size :',len(filter[0]), 'Is',ccnames[k%12],'human? '
            while True:
                ha = raw_input()
                if RepresentsInt(timewindow) and (int(ha)==1 or int(ha)==0):
                    #print timewindow
                    ha = int(ha)
                    if ha == 1:
                        annotated_humans = annotated_humans + 1
                    else :
                        annotated_obstacles = annotated_obstacles + 1
                    break
                else:
                    print 'Try again, 1 for human or 0 for obstacle'
                    
            #grid=gridfit(yi[filter], zi[filter], xi[filter], 16, 16) #extract surface
            #grid=grid-np.amin(grid) #build surface grid
            #surfaces.append(grid)
            #hogs.append(hog(grid)) #extract features
            human[filter]=ha
            ann.append(ha)

    hogs_temp = np.array(np.array(hogs))
    return cluster_labels,human,hogs,ann,surfaces,cluster_points
def clustering_procedure(clear_data, num_c):

    global cc, ccnames, z, z_scale, _3d_figure
    global all_clusters,all_hogs,all_gridfit,all_orthogonal
    global tot_results, all_annotations, metrics
    global pause
    
    hogs=[]
    colors=[]
    align_cl=[]	#contains the aligned data clouds of each cluster
    vcl=[] #Valid Cluster Labels 
    valid_flag=0 #this flag is only set if we have at least one valid cluster
    grids=[]
    cls = []

    Eps, cluster_labels= mt.dbscan(clear_data,3) # DB SCAN

    max_label=int(np.amax(cluster_labels))

    [xi,yi,zi] = [clear_data[:,0] , clear_data[:,1] , clear_data[:,2]]

    #for every created cluster - its data points
    for k in range(1,max_label+1) :
        filter=np.where(cluster_labels==k)

        if len(filter[0])>40 :

            valid_flag=1

	    #points of every cluster at each timewindow-frame
	    [xk,yk,zk]=[xi[filter],yi[filter],zi[filter]]

	    speed(xk,yk,zk)
	    trans_matrix =[[xk,yk,zk]]
	    all_clusters.append([xk,yk,zk])


	    #we get U by applying svd to the covariance matrix. U represents the rotation matrix of each cluster based on the variance of each dimension.
	    U,s,V=np.linalg.svd(np.cov([xk,yk,zk]), full_matrices=False)

	    #translate each cluster to the beginning of the axis and then do the rotation
	    [xnew,ynew,znew]=translate_cluster(xk,yk,zk)

	    #(traslation matrix) x (rotation matrix) = alignemt of cluster
	    alignment_result=[[sum(a*b for a,b in zip(X_row,Y_col)) for X_row in zip(*[xnew,ynew,znew])] for Y_col in U]
	    alignment_result=multiply_array(xnew,ynew,znew, V)
	
	    #steps2(xk,yk,zk)

	    
	    cls.append([xk,yk,zk])
	    
	    align_cl.append(alignment_result)
	    all_orthogonal.append(alignment_result)

	    vcl.append(k)
            colors.append(ccnames[k%12])
            grid=gridfit(alignment_result[0], alignment_result[1], alignment_result[2], 16, 16) #extract surface - y,z,x alignment_result[1]
	    all_gridfit.append(grid)

            grid=grid-np.amin(grid)
	    grids.append(grid)

	    features=hog(grid)
	    f=hog(grid, orientations=6, pixels_per_cell=(8, 8), cells_per_block=(1, 1), visualise=False)
	    all_hogs.append(f)
            hogs.append(f)  #extract hog features

	
    if valid_flag != 0:    
    	overlap_trace(cls)


	#3d_figure.show()
    if pause_function:
    	print '\033[93m '+ str(pause) + ' \033[0m'
    if not pause:
	#_3d_figure.clear()
	if num_of_diagrams > 1:
		ax.clear()
		ax.set_title("3D view")
    		ax.set_xlabel('X - Distance')
    		ax.set_ylabel('Y - Robot')
    		ax.set_zlabel('Z - Time')

    	update_plots(valid_flag,hogs,xi,yi,zi,cluster_labels,vcl, align_cl, grids)
Example #6
0
def clustering_procedure(clear_data, num_c):

    global cc, ccnames, z, z_scale, _3d_figure
    global all_clusters, all_hogs, all_gridfit, all_orthogonal
    global tot_results, all_annotations, metrics
    global pause

    hogs = []
    colors = []
    align_cl = []  #contains the aligned data clouds of each cluster
    vcl = []  #Valid Cluster Labels
    valid_flag = 0  #this flag is only set if we have at least one valid cluster
    grids = []
    cls = []

    Eps, cluster_labels = mt.dbscan(clear_data, 3)  # DB SCAN

    max_label = int(np.amax(cluster_labels))

    [xi, yi, zi] = [clear_data[:, 0], clear_data[:, 1], clear_data[:, 2]]

    #for every created cluster - its data points
    for k in range(1, max_label + 1):
        filter = np.where(cluster_labels == k)

        if len(filter[0]) > 40:

            valid_flag = 1

            #points of every cluster at each timewindow-frame
            [xk, yk, zk] = [xi[filter], yi[filter], zi[filter]]

            speed(xk, yk, zk)
            trans_matrix = [[xk, yk, zk]]
            all_clusters.append([xk, yk, zk])

            #we get U by applying svd to the covariance matrix. U represents the rotation matrix of each cluster based on the variance of each dimension.
            U, s, V = np.linalg.svd(np.cov([xk, yk, zk]), full_matrices=False)

            #translate each cluster to the beginning of the axis and then do the rotation
            [xnew, ynew, znew] = translate_cluster(xk, yk, zk)

            #(traslation matrix) x (rotation matrix) = alignemt of cluster
            alignment_result = [[
                sum(a * b for a, b in zip(X_row, Y_col))
                for X_row in zip(*[xnew, ynew, znew])
            ] for Y_col in U]
            alignment_result = multiply_array(xnew, ynew, znew, V)

            #steps2(xk,yk,zk)

            cls.append([xk, yk, zk])

            align_cl.append(alignment_result)
            all_orthogonal.append(alignment_result)

            vcl.append(k)
            colors.append(ccnames[k % 12])
            grid = gridfit(alignment_result[0], alignment_result[1],
                           alignment_result[2], 16,
                           16)  #extract surface - y,z,x alignment_result[1]
            all_gridfit.append(grid)

            grid = grid - np.amin(grid)
            grids.append(grid)

            features = hog(grid)
            f = hog(grid,
                    orientations=6,
                    pixels_per_cell=(8, 8),
                    cells_per_block=(1, 1),
                    visualise=False)
            all_hogs.append(f)
            hogs.append(f)  #extract hog features

    if valid_flag != 0:
        overlap_trace(cls)

#3d_figure.show()
    if pause_function:
        print '\033[93m ' + str(pause) + ' \033[0m'
    if not pause:
        #_3d_figure.clear()
        if num_of_diagrams > 1:
            ax.clear()
            ax.set_title("3D view")
            ax.set_xlabel('X - Distance')
            ax.set_ylabel('Y - Robot')
            ax.set_zlabel('Z - Time')

        update_plots(valid_flag, hogs, xi, yi, zi, cluster_labels, vcl,
                     align_cl, grids)
Example #7
0
def cluster_train(clear_data):

    global cc, ccnames, kat, ax, fig1, wall_cart, TP, FP, TN, FN, annotations_checked, fig3
    hogs=[]
    surfaces=[]
    ann=[]

    Eps, cluster_labels= dbscan(clear_data,3) # DB SCAN
    print  len(clear_data),' points in ', np.amax(cluster_labels),'clusters'
    #print 'Eps = ', Eps, ', outliers=' ,len(np.where(cluster_labels==-1))
    max_label=int(np.amax(cluster_labels))
    human=np.zeros(len(clear_data))

    [xi,yi,zi] = [clear_data[:,0] , clear_data[:,1] , clear_data[:,2]]
    fig1.clear()
    kat.clear()
    kat.plot(wall_cart[:,0],wall_cart[:,1])
    for k in range(1,max_label+1) :
        filter=np.where(cluster_labels==k)
        if len(filter[0])>timewindow :
            ax.scatter(xi[filter],yi[filter], zi[filter], 'z', 30,c=cc[k%12])
            fig1.add_axes(ax)
            #kat.scatter(xi[filter],yi[filter],s=20, c=cc[k-1])
            kat.scatter(xi[filter],yi[filter],s=20, c=cc[k%12])
            
            
            grid=gridfit(yi[filter], zi[filter], xi[filter], 16, 16) #extract surface
            grid=grid-np.amin(grid) #build surface grid
            fig3.clear()
            ax3 = fig3.add_subplot(1,1,1, projection='3d')
            X, Y = np.mgrid[:16, :16]
            surf = ax3.plot_surface(X, Y, grid, rstride=1, cstride=1, cmap=cm.gray,
                    linewidth=0, antialiased=False)
            surfaces.append(grid)
            hogs.append(hog(grid)) #extract features
            
            plt.pause(0.0001)
            
            #print ccnames[k-1],' cluster size :',len(filter[0]), 'Is',ccnames[k-1],'human? '
            print ccnames[k%12],' cluster size :',len(filter[0]), 'Is',ccnames[k%12],'human? '
            while True:
                ha = raw_input()
                if RepresentsInt(timewindow) and (int(ha)==1 or int(ha)==0):
                    #print timewindow
                    ha = int(ha)
                    break
                else:
                    print 'Try again, 1 for human or 0 for obstacle'
                    
            if ha == classifier_annotations[0,annotations_checked]:
                if ha == 1:
                    TP+=1
                    print 'TP'
                    print TP
                else:
                    TN+=1
                    print 'TN'
                    print TN
            else:
                if classifier_annotations[0,annotations_checked] == 1:
                    FP+=1
                    print 'FP'
                    print FP
                else:
                    FN+=1
                    print 'FN'
                    print FN
            annotations_checked+=1
            human[filter]=ha
            ann.append(ha)

    return cluster_labels,human,hogs,ann,surfaces