Example #1
0
class Seq2seq(BaseModel):
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        self.encoder = Encoder(V, D, H)
        self.decoder = Decoder(V, D, H)
        self.softmax = TimeSoftmaxWithLoss()

        self.params = self.encoder.params + self.decoder.params
        self.grads = self.encoder.grads + self.decoder.grads

    def forward(self, xs, ts):
        decoder_xs, decoder_ts = ts[:, :-1], ts[:, 1:]
        h = self.encoder.forward(xs)
        score = self.decoder.forward(decoder_xs, h)
        loss = self.softmax.forward(score, decoder_ts)
        return loss

    def backward(self, dout=1):
        dout = self.softmax.backward(dout)
        dh = self.decoder.backward(dout)
        dout = self.encoder.backward(dh)
        return dout

    def generate(self, xs, start_id, sample_size):
        h = self.encoder.forward(xs)
        sampled = self.decoder.generate(h, start_id, sample_size)
        return sampled
Example #2
0
class BetterLstmLm(BaseModel):
    def __init__(self,
                 vocab_size=10000,
                 wordvec_size=650,
                 hidden_size=650,
                 dropout_ratio=0.5):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        # Initialize Weights
        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx1 = (rn(D, 4 * H) / np.sqrt(D)).astype('f')  # Xavier Initialize
        lstm_Wh1 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')  # Xavier Initialize
        lstm_b1 = np.zeros(4 * H).astype('f')
        lstm_Wx2 = (rn(D, 4 * H) / np.sqrt(H)).astype('f')  # Xavier Initialize
        lstm_Wh2 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')  # Xavier Initialize
        lstm_b2 = np.zeros(4 * H).astype('f')
        affine_b = np.zeros(V).astype('f')

        # 세 가지 개선
        self.layers = [
            TimeEmbedding(embed_W),
            TimeDropout(dropout_ratio),
            TimeLSTM(lstm_Wx1, lstm_Wh1, lstm_b1, stateful=True),
            TimeDropout(dropout_ratio),
            TimeLSTM(lstm_Wx2, lstm_Wh2, lstm_b2, stateful=True),
            TimeDropout(dropout_ratio),
            TimeAffine(embed_W.T, affine_b)  # Weight Tying
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.lstm_layers = [self.layers[2], self.layers[4]]
        self.drop_layers = [self.layers[1], self.layers[3], self.layers[5]]

        # Aggregate all Weights and Gradients
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads

    def predict(self, xs, train_flg=False):
        for layer in self.drop_layers:
            layer.train_flg = train_flg
        for layer in self.layers:
            xs = layer.forward(xs)
        return xs

    def forward(self, xs, ts, train_flg=True):
        score = self.predict(xs, train_flg)
        loss = self.loss_layer.forward(score, ts)
        return loss

    def backward(self, dout=1):
        dout = self.loss_layer.backward(dout)
        for layer in reversed(self.layers):
            dout = layer.backward(dout)
        return dout

    def reset_state(self):
        for layer in self.lstm_layers:
            layer.reset_state()
Example #3
0
class LstmLm:
    def __init__(self, vocab_size=10000, wordvec_size=100, hidden_size=100):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        # Initialize Weights
        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx = (rn(D, 4 * H) / np.sqrt(D)).astype('f')  # Xavier Initialize
        lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')  # Xavier Initialize
        lstm_b = np.zeros(4 * H).astype('f')
        affine_W = (rn(H, V) / np.sqrt(H)).astype('f')  # Xavier Initialize
        affine_b = np.zeros(V).astype('f')

        # Create Layers
        self.layers = [
            TimeEmbedding(embed_W),
            TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True),
            TimeAffine(affine_W, affine_b)
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.lstm_layer = self.layers[1]

        # Aggregate all Weights and Gradients
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads

    def predict(self, xs):
        for layer in self.layers:
            xs = layer.forward(xs)
        return xs

    def forward(self, xs, ts):
        score = self.predict(xs)
        loss = self.loss_layer.forward(score, ts)
        return loss

    def backward(self, dout=1):
        dout = self.loss_layer.backward(dout)
        for layer in reversed(self.layers):
            dout = layer.backward(dout)
        return dout

    def reset_state(self):
        self.lstm_layer.reset_state()

    def save_params(self, file_name='LstmLm.pkl'):
        with open(file_name, 'wb') as f:
            pickle.dump(self.params, f)

    def load_params(self, file_name='LstmLm.pkl'):
        with open(file_name, 'rb') as f:
            self.params = pickle.load(f)
Example #4
0
class SimpleRnnLm:
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        # Initialize Weights
        embed_W = (rn(V, D) / 100).astype('f')
        rnn_Wx = (rn(D, H) / np.sqrt(D)).astype('f')  # Xavier Initialize
        rnn_Wh = (rn(H, H) / np.sqrt(H)).astype('f')  # Xavier Initialize
        rnn_b = np.zeros(H).astype('f')
        affine_W = (rn(H, V) / np.sqrt(H)).astype('f')  # Xavier Initialize
        affine_b = np.zeros(V).astype('f')

        # Create Layers
        self.layers = [
            TimeEmbedding(embed_W),
            TimeRNN(rnn_Wx, rnn_Wh, rnn_b, stateful=True),
            TimeAffine(affine_W, affine_b)
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.rnn_layer = self.layers[1]

        # Aggregate all Weights and Gradients
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads

    def forward(self, xs, ts):
        for layer in self.layers:
            xs = layer.forward(xs)
        loss = self.loss_layer.forward(xs, ts)
        return loss

    def backward(self, dout=1):
        dout = self.loss_layer.backward(dout)
        for layer in reversed(self.layers):
            dout = layer.backward(dout)
        return dout

    def reset_state(self):
        self.rnn_layer.reset_state()