Example #1
0
	def  _get_outputs(self, inputs, input_seq_length, is_training):
		'''
        Create the variables and do the forward computation

        Args:
            inputs: the inputs to the neural network, this is a list of
                [batch_size x time x ...] tensors
            input_seq_length: The sequence lengths of the input utterances, this
                is a [batch_size] vector
            is_training: whether or not the network is in training mode

        Returns:
            - output, which is a [batch_size x time x ...] tensors
        '''

		#the brnn layer
		brnn = layer.BRNNLayer(
			num_units=int(self.conf['num_units']))

		#code not available for multiple inputs!!
		if len(inputs) > 1:
			raise 'The implementation of DBRNN expects 1 input and not %d' %len(inputs)
		else:
			inputs=inputs[0]

		with tf.variable_scope(self.scope):
			if is_training and float(self.conf['input_noise']) > 0:
				inputs = inputs + tf.random_normal(
					tf.shape(inputs),
					stddev=float(self.conf['input_noise']))

			logits = inputs

			for l in range(int(self.conf['num_layers'])):
				logits = brnn(logits, input_seq_length,
							  'layer' + str(l))

				if is_training and float(self.conf['dropout']) < 1:
					logits = tf.nn.dropout(logits, float(self.conf['dropout']))

			output = logits


		return output
Example #2
0
    def _get_outputs(self, inputs, input_seq_length, is_training):
        '''
        Create the variables and do the forward computation

        Args:
            inputs: the inputs to the neural network, this is a list of
                [batch_size x time x ...] tensors
            input_seq_length: The sequence lengths of the input utterances, this
                is a [batch_size] vector
            is_training: whether or not the network is in training mode

        Returns:
            - output, which is a [batch_size x time x ...] tensors
        '''

        num_capsules = int(self.conf['num_capsules'])
        capsule_dim = int(self.conf['capsule_dim'])
        routing_iters = int(self.conf['routing_iters'])
        if 'rec_only_vote' in self.conf and self.conf[
                'rec_only_vote'] == 'True':
            rec_only_vote = True
        else:
            rec_only_vote = False
        if 'recurrent_probability_fn' in self.conf:
            if self.conf['recurrent_probability_fn'] == 'sigmoid':
                recurrent_probability_fn = tf.nn.sigmoid
            elif self.conf['recurrent_probability_fn'] == 'unit':
                recurrent_probability_fn = ops.unit_activation
        else:
            recurrent_probability_fn = None

        if 'accumulate_input_logits' in self.conf and self.conf[
                'accumulate_input_logits'] == 'False':
            accumulate_input_logits = False
        else:
            accumulate_input_logits = True

        if 'accumulate_state_logits' in self.conf and self.conf[
                'accumulate_state_logits'] == 'False':
            accumulate_state_logits = False
        else:
            accumulate_state_logits = True

        if 'logits_prior' in self.conf and self.conf['logits_prior'] == 'True':
            logits_prior = True
        else:
            logits_prior = False

#code not available for multiple inputs!!
        if len(inputs) > 1:
            raise 'The implementation of CapsNet expects 1 input and not %d' % len(
                inputs)
        else:
            inputs = inputs[0]

        with tf.variable_scope(self.scope):
            if is_training and float(self.conf['input_noise']) > 0:
                inputs = inputs + tf.random_normal(
                    tf.shape(inputs), stddev=float(self.conf['input_noise']))

            #Primary capsule.
            with tf.variable_scope('primary_capsule'):
                output = tf.identity(inputs, 'inputs')
                input_seq_length = tf.identity(input_seq_length,
                                               'input_seq_length')

                #First layer is simple bidirectional rnn layer, without activation (squash activation
                #will be applied later)
                primary_output_dim = num_capsules * capsule_dim
                primary_capsules_layer = layer.BRNNLayer(
                    num_units=primary_output_dim, linear_out_flag=True)

                primary_capsules = primary_capsules_layer(
                    output, input_seq_length)
                primary_capsules = tf.reshape(primary_capsules, [
                    output.shape[0].value,
                    tf.shape(output)[1], num_capsules * 2, capsule_dim
                ])

                primary_capsules = ops.squash(primary_capsules)

                output = tf.identity(primary_capsules, 'primary_capsules')

            # non-primary capsules
            for l in range(1, int(self.conf['num_layers'])):
                with tf.variable_scope('layer%d' % l):
                    #a capsule layer
                    caps_brnn_layer = layer.BRCapsuleLayer(
                        num_capsules=num_capsules,
                        capsule_dim=capsule_dim,
                        routing_iters=routing_iters,
                        recurrent_probability_fn=recurrent_probability_fn,
                        rec_only_vote=rec_only_vote,
                        logits_prior=logits_prior,
                        accumulate_input_logits=accumulate_input_logits,
                        accumulate_state_logits=accumulate_state_logits)

                    output = caps_brnn_layer(output, input_seq_length)

                    if is_training and float(self.conf['dropout']) < 1:
                        output = tf.nn.dropout(output,
                                               float(self.conf['dropout']))

            output_dim = num_capsules * 2 * capsule_dim
            output = tf.reshape(
                output,
                [output.shape[0].value,
                 tf.shape(output)[1], output_dim])

        return output