Example #1
0
 def __init__(self):
     self.read_data = ReadData()
     self.naive = Naive()
     self.branch_and_bound = Branch_And_Bound()
     self.tests = Tests()
     self.data = []
     self.choice = 0
     self.starting_city = 0
Example #2
0
def test_naive(filename, p):
    start = time.time()
    f = open(filename)
    t = f.read()
    alg1 = Naive(t)
    results = alg1.match(p)
    end = time.time()
    col_time = end - start
    return col_time, results
Example #3
0
class Tests:
    def __init__(self):
        self.data = ReadData()
        self.naive = Naive()
        self.branch_and_bound = Branch_And_Bound()

    # testy dla przeglądu zupełnego
    def testing_naive(self):
        for size in range(5, 12):
            graphs = self.data.generate_random_data(
                150, size)  # generowanie losowych grafów
            help_time = 0
            total_time = 0
            for j in range(50):
                exec_time = time.time()
                self.naive.naive_algorithm(graphs[j], 0)
                exec_time = time.time() - exec_time
                help_time += exec_time
                if help_time >= 150.0:
                    break
            for i in range(50, 150):
                exec_time = time.time()
                self.naive.naive_algorithm(graphs[j], 0)
                exec_time = time.time() - exec_time  # czas pojedynczego testu
                total_time += exec_time  # sumowanie czasu
                if total_time >= 300.0:
                    print('Wykonano: ', i - 50, 'prób')
                    break
            print('Rozmiar grafu: ', size)
            print('Średni czas: ', total_time / (i - j))

    # testy dla metody podziału i ograniczen
    def testing_b_b(self):
        # rozmiary instancji poszczególnych testów
        test = [5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 21]
        for size in test:
            graphs = self.data.generate_random_data(150, size)
            help_time = 0
            total_time = 0
            for j in range(50):
                exec_time = time.time()
                self.branch_and_bound.find_solution(graphs[j], 0)
                exec_time = time.time() - exec_time
                help_time += exec_time
                if help_time >= 150.0:
                    break
            for i in range(50, 150):
                exec_time = time.time()
                self.branch_and_bound.find_solution(graphs[i], 0)
                exec_time = time.time() - exec_time  # czas pojedynczego testu
                total_time += exec_time  # sumowanie czasu
                if total_time >= 300.0:
                    print('Wykonano: ', i - 50, 'prób')
                    break
            print('Rozmiar grafu: ', size)
            print('Średni czas: ', total_time / (i - j))
Example #4
0
def crossValidationIris(k=5):
    testData1 = np.load("iris_data/competitionData.npy")
    testData2 = np.load("iris_data/evaluationData.npy")
    trainData = np.load("iris_data/trainingData.npy")
    wholeData = np.concatenate((trainData, testData1, testData2)).astype(float)
    folds = k
    attTypes = [1, 1, 1, 1]
    trainingSets = np.split(wholeData,
                            [(i + 1) * round(len(wholeData) / folds)
                             for i in range(folds - 1)])

    for set in trainingSets:
        print('\n\n\n', set, '\n\n\n')

    for idx, testData in enumerate(trainingSets):
        print(np.r_[0:idx, idx + 1:len(trainingSets) + 1])
        trainingData = np.concatenate(
            [trainingSets[i] for i in np.r_[0:idx, idx + 1:len(trainingSets)]])
        print('testData: ', len(testData))
        print('trainingData: ', len(trainingData))
        print('K FOLD #' + str(idx))
        start = time.time()
        model = Naive(trainingData, attTypes)
        timer = time.time()
        print('Time to train: ', timer - start)
        start = time.time()
        evalModel = Evaluation(model, testData, CLASS_AMM_IRIS)
        evalModel.normalPrint()
        print('Took ', time.time() - start, 's')
Example #5
0
def BayesIris():
    testData1 = np.load("iris_data/competitionData.npy")
    testData2 = np.load("iris_data/evaluationData.npy")
    trainData = np.load("iris_data/trainingData.npy").astype(float)
    testData = np.concatenate((testData1, testData2)).astype(float)

    model = Naive(trainData, [1, 1, 1, 1])

    ev = Evaluation(model, testData, CLASS_AMM_IRIS)
    ev.normalPrint()
Example #6
0
def NBCovType(NBSizes=[5, 50, 500]):
    attTypes = [1 for _ in range(10)] + [0 for _ in range(44)]
    for size in NBSizes:
        print('\n\nLoading data from path=' + "cov_data/" + str(size) +
              "k/trainingData.npy")
        trainingData = np.load("cov_data/" + str(size) + "k/trainingData.npy")
        print('- Dataset of ' + str(size) + 'k')
        start = time.time()
        print('\n\n-- Train for NAIVE BAYES')
        model = Naive(trainingData, attTypes)
        timer = time.time()
        print('Time to train: ', timer - start)
        evalModel = Evaluation(model, competitionDataCov, CLASS_AMM_COV)
        print('--- Evaluation for size=' + str(size))
        evalModel.normalPrint()
        print('Took ', time.time() - start, 's')
Example #7
0
def crossValidationCovType(k=5, size=500):
    attTypes = [1 for _ in range(10)] + [0 for _ in range(44)]
    wholeData = np.load("cov_data/" + str(size) + "k/trainingData.npy")
    folds = k
    trainingSets = np.split(wholeData, [(i + 1) * (len(wholeData) // folds)
                                        for i in range(folds - 1)])
    print([len(i) for i in trainingSets])

    for idx, testData in enumerate(trainingSets):
        print(np.r_[0:idx, idx + 1:len(trainingSets) + 1])
        trainingData = np.concatenate(
            [trainingSets[i] for i in np.r_[0:idx, idx + 1:len(trainingSets)]])
        print('K FOLD #' + str(idx))
        start = time.time()
        model = Naive(trainingData, attTypes)
        timer = time.time()
        print('Time to train: ', timer - start)
        start = time.time()
        evalModel = Evaluation(model, competitionDataCov, CLASS_AMM_COV)
        evalModel.normalPrint()
        print('Took ', time.time() - start, 's')
Example #8
0
    print(f"CASE {case}:")
    start_time_n = time.time()
    print(f"NAIVE: {' '.join(map(str, naive.find_pattern()))}")
    end_time_n = count_time(start_time_n)
    start_time_rk = time.time()
    print(f"RABIN-KARP: {' '.join(map(str, rk.find_pattern()))}")
    end_time_rk = count_time(start_time_rk)
    start_time_kmp = time.time()
    print(f"KNUTH-MORRIS-PRATT: {' '.join(map(str, kmp.find_pattern()))}")
    end_time_kmp = count_time(start_time_kmp)
    print("--------------------------------------------------")
    print(
        f"NAIVE TIME: {end_time_n}\nRABIN-KARP TIME: {end_time_rk}\nKNUTH-MORRIS-PRATT TIME: {end_time_kmp}"
    )
    print(naive.find_pattern() == rk.find_pattern() == kmp.find_pattern())
    print("--------------------------------------------------")


if __name__ == "__main__":
    files_name = ["pattern", "pattern1", "text", "text1"]
    converted_files = setup_array(files_name)
    n = Naive(converted_files[0], converted_files[2])
    n1 = Naive(converted_files[1], converted_files[3])
    r_k = RabinKarp(converted_files[0], converted_files[2], 128, 27077)
    r_k1 = RabinKarp(converted_files[1], converted_files[3], 128, 27077)
    k_m_p = KnuthMorrisPratt(converted_files[0], converted_files[2])
    k_m_p1 = KnuthMorrisPratt(converted_files[1], converted_files[3])
    test(1, n, r_k, k_m_p)
    test(2, n1, r_k1, k_m_p1)
    unittest.main()
Example #9
0
class Menu:
    def __init__(self):
        self.read_data = ReadData()
        self.naive = Naive()
        self.branch_and_bound = Branch_And_Bound()
        self.tests = Tests()
        self.data = []
        self.choice = 0
        self.starting_city = 0

    def main_menu(self):
        while self.choice != 6:
            print('_________MENU_________')
            print('1. Wybierz dane')
            print('2. Wyświetl dane')
            print('3. Brute force')
            print('4. Branch and bound')
            print('5. Testy')
            print('6. Wyjście')

            self.choice = input('Wybór: ')

            if self.choice == '1':
                self.data = self.read_data.get_data()

            elif self.choice == '2':
                if self.data == [] or self.data == None:
                    print('Brak danych do wyświetlenie.')
                else:
                    print('Dane: ')
                    for graph in self.data:
                        print('')
                        for row in graph:
                            print(row)

            elif self.choice == '3':
                for graph in self.data:
                    start = datetime.datetime.now()
                    solution, path = self.naive.naive_algorithm(
                        graph, self.starting_city)
                    duration = datetime.datetime.now() - start
                    print('Duration = ', duration)
                    print('Solution = ', solution)
                    print('Path = ', path)

            elif self.choice == '4':
                for graph in self.data:
                    start = datetime.datetime.now()
                    solution, path = self.branch_and_bound.find_solution(
                        graph, self.starting_city)
                    duration = datetime.datetime.now() - start
                    print('Duration = ', duration)
                    print('Solution = ', solution)
                    print('Path = ', path)

            elif self.choice == '5':
                print('1. Brute force: ')
                print('2. Branch and bound: ')
                choice = int(input('Wybór: '))
                if choice == 1:
                    self.tests.testing_naive()
                if choice == 2:
                    self.tests.testing_b_b()

            elif self.choice == '6':
                exit()

            else:
                print("Wprowadz poprawną liczbę")
Example #10
0
from preprocessing import Preprocessing
from naive import Naive

if __name__ == "__main__":

	prepross = Preprocessing()

	instances = prepross.get_instances_of_file()
	preclassified_instances = prepross.pre_classfiy(instances)
	#prepross.bag_of_words(preclassified_instances)

	nv = Naive()
	nv.naive_bayes(preclassified_instances)
Example #11
0
 def test_naive(self):
     naive_test = Naive(self.test_case[0], self.test_case[1])
     naive_test1 = Naive(self.test_case1[0], self.test_case1[1])
     self.assertEqual(naive_test.find_pattern(), [0, 9, 13])
     self.assertEqual(naive_test1.find_pattern(), [])
Example #12
0
from naive import Naive

P = 'GCAGAGAG'
T = 'GCATCGCAGAGAGTATACAGTACGGCAGAGAG'
algorithm = Naive(T)
print(algorithm.match(P))
Example #13
0
def timeToClassify(count=360):
    attTypes = [1 for _ in range(10)] + [0 for _ in range(44)]
    print('===============================================================')
    print('======= Time to classify augmenting counts on Train Set =======')
    print('===============================================================')
    trainingData = np.load("cov_data/500k/trainingData.npy").astype(float)
    sizes = [i + 1 for i in range(count)]
    knnTimes = []
    id3TrainTimes = []
    id3Times = []
    nbTrainTimes = []
    nbTimes = []
    tupla = competitionDataCov[2, :-1]
    for i in sizes:
        start = time.time()
        nb = Naive(trainingData[:i * 1000], attTypes)
        ti = time.time() - start
        nbTrainTimes.append(ti)
        print('#', i, ' NB Train - ', ti)
        minTime = takeMinTime(nb, tupla)
        nbTimes.append(minTime)
        print('#', i, ' NB Classify - ', minTime)
        del nb

        start = time.time()
        id3 = ID3(trainingData[:i * 1000], 54, True, 2, attTypes, 1)
        ti = time.time() - start
        id3TrainTimes.append(ti)
        print('#', i, ' ID3 Train - ', ti)
        minTime = takeMinTime(id3, tupla)
        id3Times.append(minTime)
        print('#', i, ' ID3 Classify - ', minTime)
        del id3

        knn = Knn2(trainingData[:i * 1000], 7)
        minTime = takeMinTime(knn, tupla)
        knnTimes.append(minTime)
        print('#', i, ' K-NN Classify - ', minTime)
        del knn

    plt.figure(1)
    plt.subplot(211)
    plt.ylabel('Time')
    plt.title('Naive Bayes train time')
    plt.plot(sizes, nbTrainTimes)

    plt.subplot(212)
    plt.ylabel('Time')
    plt.title('ID3 train time')
    plt.plot(sizes, id3TrainTimes)

    plt.figure(2)
    plt.subplot(311)
    plt.ylabel('Time')
    plt.title('Naive Bayes classify time')
    plt.plot(sizes, nbTimes)

    plt.subplot(312)
    plt.ylabel('Time')
    plt.title('ID3 classify time')
    plt.plot(sizes, id3Times)

    plt.subplot(313)
    plt.ylabel('Time')
    plt.title('K-NN classify time')
    plt.plot(sizes, knnTimes)

    plt.show()
Example #14
0
from file_manager import File_manager
from naive import Naive
from datamuse import Datamuse
import asyncio

TRAIN_FILENAME = "train_data.tsv"
TEST_FILENAME = "data_estag_ds.tsv"

if __name__ == '__main__':

    filemng = File_manager()
    train_instances = filemng.get_instances_of_file(TRAIN_FILENAME)
    test_instances = filemng.get_instances_of_file(TEST_FILENAME)

    nv = Naive()
    dic = filemng.read_dictionary()
    dtmuse = Datamuse()

    loop = asyncio.get_event_loop()
    category_synonymous = loop.run_until_complete(
        dtmuse.get_synonymous('smartphone'))
    loop.close()
    category_synonymous = eval(category_synonymous)

    nv.naive_bayes(train_instances, dic, test_instances, category_synonymous)
Example #15
0
                         image_size,
                         latent_size,
                         n_context,
                         test=True,
                         seed=seed)
test_data = DataGenerator("DAVIS_Challenge",
                          batch_size,
                          image_size,
                          latent_size,
                          n_context,
                          test=True,
                          seed=seed)

# model = VAE()
# model.load("model.h5")
model = Naive()

for name, data in zip(("train", "val", "test"),
                      (train_data, val_data, test_data)):
    input_, (truth, ) = next(data)
    (_, contexts) = input_
    prevs, nexts = contexts[:, :, :, :3], contexts[:, :, :, 3:]
    pred = model.model_test.predict_on_batch(input_)

    for label, batch in zip(("1", "2", "truth", "pred"),
                            (prevs, nexts, truth, pred)):
        result = np.round(np.clip(255 * batch, 0, 255)).astype("uint8")

        for i in range(result.shape[0]):
            imageio.imwrite("%s_%s_%d_%s.png" % (prefix, name, i, label),
                            result[i])
Example #16
0
 def __init__(self):
     self.data = ReadData()
     self.naive = Naive()
     self.branch_and_bound = Branch_And_Bound()
 def naive_time(self, index, iter):
     NaiveAlgorithm = Naive(index, self.SymmetricalMatrix)
     start = timer()
     NaiveAlgorithm.travellingSalesmanProblem()
     end = timer()
     self.NaiveTime[iter] = end - start