import math import torch import torch.nn as nn from torch.autograd import Variable from torch.utils.data import DataLoader from name_dataset import NameDataset from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence # Parameters and DataLoaders HIDDEN_SIZE = 100 N_LAYERS = 2 BATCH_SIZE = 256 N_EPOCHS = 100 test_dataset = NameDataset(is_train_set=False) test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=True) train_dataset = NameDataset(is_train_set=True) train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) N_COUNTRIES = len(train_dataset.get_countries()) print(N_COUNTRIES, "countries") N_CHARS = 128 # ASCII # Some utility functions def time_since(since):
import torch import torch.nn as nn from torch.autograd import Variable from torch.utils.data import DataLoader from name_dataset import NameDataset from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence HIDDEN_SIZE = 100 N_LAYERS = 2 BATCH_SIZE = 256 N_EPOCHS = 100 test_dataset = NameDataset(is_train_set=False) test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=True) train_dataset = NameDataset(is_train_set=True) train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) N_AUTHORS = len(train_dataset.get_authors()) print(N_AUTHORS, "authors") N_CHARS = 128 def time_since(since):