Example #1
0
def LiveTracks(Raw, Seg, scale, locationID, RegionID, VolumeID, ID, StartID):

    with napari.gui_qt():
        if Raw is not None:

            viewer = napari.view_image(Raw, scale=scale, name='Image')
            Labels = viewer.add_labels(Seg, scale=scale, name='SegImage')
        else:
            viewer = napari.view_image(Seg, scale=scale, name='SegImage')

        trackbox = QComboBox()
        trackbox.addItem(Boxname)

        for i in range(0, len(ID)):
            trackbox.addItem(str(ID[i]))

        figure = plt.figure(figsize=(4, 4))
        multiplot_widget = FigureCanvas(figure)
        ax = multiplot_widget.figure.subplots(2, 2)

        viewer.window.add_dock_widget(multiplot_widget,
                                      name="TrackStats",
                                      area='right')
        multiplot_widget.figure.tight_layout()
        trackbox.currentIndexChanged.connect(
            lambda trackid=trackbox: TrackViewer(
                viewer, Raw, Seg, locationID, RegionID, VolumeID, scale,
                trackbox.currentText(), StartID, multiplot_widget, ax))
        viewer.window.add_dock_widget(trackbox, name="TrackID", area='left')
Example #2
0
def get_registering_points(reference, registering, fixed_points):
    print(
        f"\n\nStarting registration: click on the points in the registering image"
        + "that match those on the reference image.\n" +
        "Press 'q' to close the viewers.")

    # Crete reference image with marked points
    reference_marked = create_marked_ref_image(reference.copy(), fixed_points)

    # Reshape registering image to reference image shape
    cols, rows, chs = reference.shape
    registering = cv2.resize(registering, (rows, cols))

    with napari.gui_qt():
        # add the registering image
        registering_viewer = napari.view_image(registering,
                                               name='registering',
                                               title='Registering points')
        # registering_viewer.window._qt_window.showFullScreen()
        registering_viewer.cursor = 'pointing'

        # User input -> points
        points_layer = registering_viewer.add_points(size=POINTS_SIZE,
                                                     edge_color='k',
                                                     edge_width=EDGE_WIDTH,
                                                     face_color='springgreen',
                                                     name='registering_points')
        points_layer.mode = 'add'
        registering_viewer.active_layer = points_layer
        registering_viewer.cursor = 'pointing'

        # create a viewer for the reference image image
        reference_viewer = napari.view_image(reference_marked,
                                             name='reference',
                                             title='Fixed points')
        viewers = [reference_viewer, registering_viewer]

        # Add keybindings
        @napari.Viewer.bind_key('q', overwrite=True)
        def close_viewer(viewer):
            for viewer in viewers:
                viewer.close()

        @points_layer.mouse_drag_callbacks.append
        def check_MIN_N_POINTS(layer, event):
            if len(points_layer.data) == len(fixed_points):
                for viewer in viewers:
                    viewer.close()

    if not len(points_layer.data) == len(fixed_points):
        raise ValueError(
            f"{len(points_layer.data)} were clicked, but there were {len(fixed_points)} on the reference image.\n"
            + "Please try again.")

    return clean_check_points(
        points_layer.data, img_type='Registering'
    )[::-1]  # ? need to reverse the order for some reason
Example #3
0
def napari_show(dat, contrast_limits=None):
    import napari
    if contrast_limits is None:
        contrast_limits = [dat[0].min(), dat[0].max()]
    with napari.gui_qt():
        try:
            napari.view_image(dat,
                              contrast_limits=contrast_limits,
                              is_pyramid=False)
        except:  # napari 0.3.5 .... why??
            napari.view_image(dat, contrast_limits=contrast_limits)
Example #4
0
def viewCORstack(flip=True):
    ''' look at all the ifgs with napari'''

    import numpy as np
    import isceobj
    import napari

    params = np.load('params.npy', allow_pickle=True).item()
    gam = np.load('gam.npy')

    stack = np.zeros((len(params['pairs']), params['nyl'], params['nxl']))
    for ii in range(len(params['pairs'])):
        p = params['pairs'][ii]
        f = './merged/interferograms/' + p + '/cor_lk.r4'
        intImage = isceobj.createImage()
        intImage.dataType = 'FLOAT'
        intImage.load(f + '.xml')
        unw = intImage.memMap()[:, :, 0]
        unw = unw.copy()
        unw[gam == 0] = 0
        if flip:
            stack[ii, :, :] = np.flipud(unw)
        else:
            stack[ii, :, :] = unw
    viewer = napari.view_image(stack, colormap='jet')
Example #5
0
def plot_napari(img):
    import napari
    from scipy import ndimage as ndi
    """Visualize 3D segmentation results via napari viewer"""
    viewer = napari.view_image(img, name='cells')
    labeled = ndi.label(img)[0]
    viewer.add_labels(labeled, name='cells_colored')
Example #6
0
def look_at_video(filepath, rgb=False, cmap="gray"):
    # Use this function to look at a single video in napari
    # filepath should be path to memmapped file
    images = load_mmapped(filepath)

    with napari.gui_qt():
        viewer = napari.view_image(images, rgb=rgb, colormap=cmap)
Example #7
0
def Annotate(Raw, SegImage):
    
    with napari.gui_qt():
        viewer = napari.view_image(Raw, name = 'ThreeDimage')
        viewer.add_image(SegImage)
        pts_layer = viewer.add_points(size = 5)
        pts_layer.mode = 'add'
    return pts_layer       
Example #8
0
def show_segmentation(image, label1=None, label2=None):
    with napari.gui_qt():
        #viewer = napari.Viewer()
        viewer = napari.view_image(image, rgb=False)
        #viewer.add_image(array, rgb=False, colormap="green")
        viewer.add_labels(label1.astype(np.uint8), name='segmentation1')
        if np.any(label2):
            viewer.add_labels(label2.astype(np.uint8), name='segmentation2')
Example #9
0
def test_view_multichannel(qtbot):
    """Test adding image."""
    np.random.seed(0)
    data = np.random.random((15, 10, 5))
    viewer = napari.view_image(data, channel_axis=-1, show=False)
    assert len(viewer.layers) == data.shape[-1]
    for i in range(data.shape[-1]):
        assert np.all(viewer.layers[i].data == data.take(i, axis=-1))
    viewer.close()
def show_surface():
    model = _model3d()
    img, mask = test_image_nuclei_3d(return_mask=True)
    x = normalize(img, 1, 99.8)
    labels, polys = model.predict_instances(x)
    surface = surface_from_polys(polys)
    # add the surface
    viewer = napari.view_image(img)
    viewer.add_surface(surface)

    return viewer
Example #11
0
    def __getitem__(self, index):
        sample, subject = self.load_subject_(index)
        transformed_ = self.transform(subject)

        if self.opt.visualize_volume:
            with napari.gui_qt():
                napari.view_image(np.stack([transformed_['mr'].data.squeeze().numpy(),
                                            transformed_['trus'].data.squeeze().numpy()]))

        dict_ = {
            'A': transformed_['mr'].data[:, :self.input_size[0], :self.input_size[1], :self.input_size[2]],
            'B': transformed_['trus'].data[:, :self.input_size[0], :self.input_size[1], :self.input_size[2]],
            #'Patient': sample.split('/')[-4].replace(' ', ''),
            'A_paths': sample + "/mr.mhd",
            'B_paths': sample + "/trus.mhd"
        }
        if self.load_mask:
            dict_['A_mask'] = transformed_['mr_tree'].data[:, :self.input_size[0], :self.input_size[1], :self.input_size[2]]

        return dict_
Example #12
0
def test_view_image(qtbot):
    """Test adding image."""

    np.random.seed(0)
    data = np.random.random((10, 15))

    viewer = napari.view_image(data)
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)

    assert np.all(viewer.layers[0].data == data)

    assert len(viewer.layers) == 1
    assert view.layers.vbox_layout.count() == 2 * len(viewer.layers) + 2

    assert viewer.dims.ndim == 2
    assert view.dims.nsliders == viewer.dims.ndim
    assert np.sum(view.dims._displayed_sliders) == 0

    # Close the viewer
    viewer.window.close()

    data = np.random.random((10, 15, 20))
    viewer = napari.view_image(data)
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)
    viewer.dims.ndisplay = 3

    assert np.all(viewer.layers[0].data == data)

    assert len(viewer.layers) == 1
    assert view.layers.vbox_layout.count() == 2 * len(viewer.layers) + 2

    assert viewer.dims.ndim == 3
    assert view.dims.nsliders == viewer.dims.ndim
    assert np.sum(view.dims._displayed_sliders) == 0

    # Close the viewer
    viewer.window.close()
def run(obj: pathlib.Path, colls: pathlib.Path):
    colls = load_collisions(colls)
    colls_hist = histogram_colls_3d(colls)
    colls_hist /= colls_hist.sum()
    surface = create_napari_surface(obj)
    colormap = vispy.color.Colormap(plt.cm.gist_yarg(np.linspace(0, 1, 256)))
    with napari.gui_qt():
        v = napari.view_image(colls_hist, ndisplay=3, rgb=False, colormap=colormap)
        v.theme = 'light'
        v.add_surface(surface, colormap='magenta')
        img = v.screenshot()
        # imageio.imwrite('/data/neural_collision_detection/results/for_article/fig1/toy_neuron_only_collisions.png', img[:, :,:3], transparency=(255, 255, 255), dpi=(300, 300), prefer_uint8=False)
    make_and_save_colorbar(img, colls_hist.min(), colls_hist.max())
Example #14
0
def test_view_multichannel(qtbot):
    """Test adding image."""

    np.random.seed(0)
    data = np.random.random((15, 10, 5))
    viewer = napari.view_image(data, channel_axis=-1)
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)

    assert len(viewer.layers) == data.shape[-1]
    for i in range(data.shape[-1]):
        assert np.all(viewer.layers[i].data == data.take(i, axis=-1))

    # Close the viewer
    viewer.window.close()
Example #15
0
def test_napari(ds_src_dir, ds_dst_dir):
    # store_as = "mip_xy"
    store_as = "raw"

    # reload
    logger.info(f'load dataset with "{store_as}"')
    ds = ZarrDataset.load(ds_dst_dir, label=store_as)

    iterator = TiledDatasetIterator(ds, axes="zyx", return_key=False)
    for i, uuid in enumerate(iterator):
        data = ds[uuid]

        with napari.gui_qt():
            viewer = napari.view_image(data, scale=ds.voxel_size)

        raise RuntimeError("DEBUG")
Example #16
0
def main(args):
    image = np.asarray(Image.open(args[1]))
    default_sigma = 5.0

    with napari.gui_qt():
        viewer = napari.view_image(image, rgb=True)

        livewire = LiveWire(color.rgb2lab(image), sigma=default_sigma)
        layer = viewer.add_labels(livewire.contour,
                                  color={1: 'cyan'},
                                  name='contour',
                                  opacity=1.0)

        def valid(coords):
            return 0 <= round(coords[0]) < image.shape[0] and 0 <= round(
                coords[1]) < image.shape[1]

        @layer.mouse_move_callbacks.append
        def mouse_move(layer, event):
            coords = layer.coordinates
            if valid(coords):
                livewire.select(coords)
                layer.data = livewire.contour

        @layer.mouse_drag_callbacks.append
        def mouse_click(layer, event):
            livewire.confirm()

        @viewer.bind_key('s')
        def close_contour(viewer):
            livewire.close()
            layer.data = livewire.contour

        @magicgui(auto_call=True,
                  sigma={
                      'widget_type': QDoubleSpinBox,
                      'maximum': 255,
                      'minimum': 0.01,
                      'singleStep': 5.0
                  })
        def update_sigma(sigma: float = default_sigma):
            livewire.sigma = sigma

        sigma_box = update_sigma.Gui()
        viewer.window.add_dock_widget(sigma_box, area='left')
        viewer.layers.events.changed.connect(
            lambda x: sigma_box.refresh_choices())
Example #17
0
def run(obj: pathlib.Path, colls: pathlib.Path):
    colls = load_collisions(colls)
    colls_hist = histogram_colls_3d(colls)
    colls_hist /= colls_hist.sum()
    surface = create_napari_surface(obj)
    colormap = vispy.color.Colormap(plt.cm.gist_yarg(np.linspace(0, 1, 256)))
    with napari.gui_qt():
        v = napari.view_image(colls_hist, ndisplay=3, rgb=False, colormap=colormap)
        v.theme = 'light'
        v.add_surface(surface, colormap='magenta')
        img = v.screenshot()
        # imageio.imsave('/data/neural_collision_detection/results/for_article/supp_colls/toy_neuron_with_collisions.png', img)

    fig, ax = plt.subplots(figsize=(8, 8))
    ax.imshow(img, cmap='gist_yarg')
    ax.axis('off')
    fig.colorbar(plt.cm.ScalarMappable(cmap=plt.cm.gist_yarg, norm=plt.Normalize(vmin=colls_hist.min(), vmax=colls_hist.max())))
    plt.show()
    fig.savefig("/data/neural_collision_detection/results/for_article/supp_colls/supp_colls.png", transparent=True, dpi=300)
Example #18
0
def main(args):
    image = nib.load(args[1]).get_fdata()
    with napari.gui_qt():
        viewer = napari.view_image(image)
        blank = np.zeros(image.shape, dtype=np.int)
        viewer.add_image(blank, name='path-value', visible=False, opacity=0.5)
        viewer.add_labels(blank, name='labels', opacity=0.5)
        viewer.add_labels(blank, name='markers', opacity=1)

        # @magicgui(call_button='Segment')
        # def _segment():
        #     segment(viewer)

        # @magicgui(call_button='Save Markers')
        # def _save_markers(path: str):
        #     save_markers(viewer, path)

        # viewer.window.add_dock_widget([_segment, _save_markers], area='left')
        viewer.window.add_dock_widget([], area='left')
Example #19
0
def image_thresh(image):

    #    image = rgb2gray(io.imread(im))

    if image.shape[0] > 4000:
        image = rescale(image, 0.5, preserve_range=True, anti_aliasing=True)
        image = np.uint8(image)

    def threshold(image, t):
        arr = da.from_array(image, chunks=image.shape)
        return arr > t

    all_thresholds = da.stack([threshold(image, t) for t in np.arange(255)])

    viewer = napari.view_image(image, name='input image')
    viewer.add_image(all_thresholds,
                     name='thresholded',
                     colormap='magenta',
                     blending='additive')
Example #20
0
def test_view_pyramid(qtbot):
    """Test adding image pyramid."""
    shapes = [(40, 20), (20, 10), (10, 5)]
    np.random.seed(0)
    data = [np.random.random(s) for s in shapes]
    viewer = napari.view_image(data, is_pyramid=True)
    view = viewer.window.qt_viewer
    qtbot.addWidget(view)

    assert np.all(viewer.layers[0].data == data)

    assert len(viewer.layers) == 1
    assert view.layers.vbox_layout.count() == 2 * len(viewer.layers) + 2

    assert viewer.dims.ndim == 2
    assert view.dims.nsliders == viewer.dims.ndim
    assert np.sum(view.dims._displayed_sliders) == 0

    # Close the viewer
    viewer.window.close()
    def apply_limit(self, lim='bottom'):
        print(np.shape(self.mesh))

        if lim == 'bottom':
            max = int(np.max(self.mesh))
            print(max)
            for i in range(self.dim):
                for j in range(self.dim):
                    self.data[j, i, int(self.mesh[j, i]):] = 0
            self.data = self.data[:, :, 0:max]

        if lim == 'top':
            min = int(np.min(self.mesh))
            for i in range(self.dim):
                for j in range(self.dim):
                    self.data[j, i, :int(self.mesh[j, i])] = 0

            self.data = self.data[:, :, min:]

        with napari.gui_qt():
            viewer = napari.view_image(self.data)
Example #22
0
def main(biomarker, filename, tablename, downscale_ratio, thres_range):

    table = pd.read_csv(tablename, index_col='ID')
    col = table.loc[:, biomarker].values

    image = img_as_ubyte(tifffile.imread(filename))
    image = downscale_local_mean(image, (downscale_ratio, downscale_ratio))

    centers = []
    for t in thres_range:
        center = table.loc[
            col > t / 100,
            ['centroid_y', 'centroid_x']].values // downscale_ratio
        center = np.concatenate((np.ones((center.shape[0], 1)) * t, center),
                                axis=1).astype(int)
        if center.shape[0] != 0:
            centers.extend(center)
    centers = np.array(centers)

    with napari.gui_qt():
        viewer = napari.view_image(image, name='biomarker', colormap='green')
        viewer.add_points(centers, size=[0, 3, 3], n_dimensional=True)
Example #23
0
def viewIFGstack(flip=True):
    ''' look at all the ifgs with napari'''

    import numpy as np
    import isceobj
    import napari

    params = np.load('params.npy', allow_pickle=True).item()

    stack = np.zeros((len(params['pairs']), params['nyl'], params['nxl']))
    for ii in range(len(params['pairs'])):
        p = params['pairs'][ii]
        f = './merged/interferograms/' + p + '/fine_lk_filt.int'
        intImage = isceobj.createIntImage()
        intImage.load(f + '.xml')
        ifg = intImage.memMap()[:, :, 0]
        ifgc = np.angle(ifg)
        if flip:
            stack[ii, :, :] = np.flipud(ifgc)
        else:
            stack[ii, :, :] = ifgc
    viewer = napari.view_image(stack, colormap='RdYlBu')
Example #24
0
def get_fixed_points(reference):
    print(
        f"\n\nDefine at least {MIN_N_POINTS} fixed points on reference image.\n"
        + "Press 'q' to close viewer when all the points are defined")

    if isinstance(reference, str):
        reference = load_image(reference)

    with napari.gui_qt() as gui:
        reference_viewer = napari.view_image(reference,
                                             title='Get Fixed Points',
                                             name='reference')
        reference_viewer.window._qt_window.showFullScreen()

        points_layer = reference_viewer.add_points(size=POINTS_SIZE,
                                                   edge_color='k',
                                                   edge_width=EDGE_WIDTH,
                                                   face_color='red',
                                                   name='fixed_points')
        points_layer.mode = 'add'

        # Add keybindings
        @reference_viewer.bind_key('q', overwrite=True)
        def close_viewer(viewer):
            # Close viewer
            viewer.close()

        @points_layer.mouse_drag_callbacks.append
        def _print(layer, event):
            point, MIN_N_POINTS = layer.data[-1].astype(np.int32), len(
                layer.data)
            print(f"    added point ({point}). Tot points: {MIN_N_POINTS}")

    points = [list(p) for p in clean_check_points(points_layer.data)]
    print(f"{len(points)} points were defined.\n")
    return points
Example #25
0
from skimage import data
import napari

with napari.gui_qt():
    viewer = napari.view_image(data.astronaut(), rgb=True)

    ################## KEYBINDINGS ##################

    # print the name of each layer on terminal
    @viewer.bind_key('p')
    def print_names(viewer):
        print([layer.name for layer in viewer.layers])

    # print the message "hello" on terminal during key pressing
    # (all instructions before the yield command)
    #
    # on key releasing, print the message 'goodbye' on terminal
    # (all instructions after the yield command)
    @viewer.bind_key('m')
    def print_message(viewer):
        print('hello')
        yield
        print('goodbye')
Example #26
0
across the dimensions, specified by their size
"""

import numpy as np
from skimage import data
import napari

blobs = np.stack(
    [
        data.binary_blobs(
            length=128, blob_size_fraction=0.05, n_dim=3, volume_fraction=f)
        for f in np.linspace(0.05, 0.5, 10)
    ],
    axis=0,
)
viewer = napari.view_image(blobs.astype(float))

# add the points
points = np.array([
    [0, 0, 100, 100],
    [0, 0, 50, 120],
    [1, 0, 100, 40],
    [2, 10, 110, 100],
    [9, 8, 80, 100],
],
                  dtype=float)
viewer.add_points(points,
                  size=[0, 6, 10, 10],
                  face_color='blue',
                  out_of_slice_display=True)
Example #27
0
add_image APIs. When the window is closed it will print the coordinates of
your shapes.
"""

import numpy as np
from skimage import data
import napari


with napari.gui_qt():
    # create the viewer and window
    viewer = napari.Viewer()

    # add the image
    photographer = data.camera()
    image_layer = napari.view_image(photographer, name='photographer')

    # create a list of polygons
    polygons = [
        np.array([[11, 13], [111, 113], [22, 246]]),
        np.array(
            [
                [505, 60],
                [402, 71],
                [383, 42],
                [251, 95],
                [212, 59],
                [131, 137],
                [126, 187],
                [191, 204],
                [171, 248],
Example #28
0
    TEST_SIZE = 64

    s_psf = optics.gaussian_psf(numerical_aperture=0.3,
                                npix_axial=TEST_SIZE + 1,
                                npix_lateral=TEST_SIZE + 1)

    i_psf = inverse_psf_rfft(s_psf, l=1e-15, mode='constant')
    psfft = fft.rfft2(s_psf.sum(0))
    dirac = fft.irfft2(psfft * i_psf, s=s_psf.shape[1:])

    sample = primitives.boccia(TEST_SIZE,
                               radius=(0.8 * TEST_SIZE) // 2,
                               n_stripes=4)
    s_theta = np.arange(90)

    s_radon = spl.radon(sample, theta=s_theta, circle=True)
    s_fpsopt = imaging.fps_opt(sample, s_psf, theta=s_theta)

    s_deconv = deconvolve_sinogram(s_fpsopt, s_psf, l=0)

    viewer = napari.view_image(s_radon)
    viewer.add_image(s_fpsopt)
    viewer.add_image(s_deconv)

    viewer = napari.view_image(fft.fftshift(np.abs(i_psf), 0),
                               name='inverse PSF FFT')
    viewer.add_image(dirac)

    napari.run()
Example #29
0
"""
Displays an image pyramid
"""

from skimage import data
from skimage.util import img_as_ubyte
from skimage.color import rgb2gray
from skimage.transform import pyramid_gaussian
import napari
import numpy as np

# create pyramid from astronaut image
base = np.tile(data.astronaut(), (8, 8, 1))
pyramid = list(
    pyramid_gaussian(base, downscale=2, max_layer=4, multichannel=True))
print('pyramid level shapes: ', [p.shape[:2] for p in pyramid])

with napari.gui_qt():
    # add image pyramid
    napari.view_image(pyramid, is_pyramid=True)
Example #30
0
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_qt5agg import FigureCanvas

import napari

# create image
x = np.linspace(0, 5, 256)
y = np.linspace(0, 5, 256)[:, np.newaxis]
img = np.sin(x)**10 + np.cos(10 + y * x) * np.cos(x)

# add it to the viewer
viewer = napari.view_image(img, colormap='viridis')
layer = viewer.layers[-1]

# create mpl figure with subplots
mpl_fig = plt.figure()
ax = mpl_fig.add_subplot(111)
(line, ) = ax.plot(layer.data[123])  # linescan through the middle of the image

# add the figure to the viewer as a FigureCanvas widget
viewer.window.add_dock_widget(FigureCanvas(mpl_fig))


# connect a callback that updates the line plot when
# the user clicks on the image
@layer.mouse_drag_callbacks.append
def profile_lines_drag(layer, event):
    try:
        line.set_ydata(layer.data[int(event.position[0])])
        line.figure.canvas.draw()