Example #1
0
def main(args):
    file_name = 'log_%s_%d' % ('gpus', args.gpu)
    logger = setup_logger(file_name,
                          args.save_dir,
                          args.gpu,
                          log_level='DEBUG',
                          filename='%s.txt' % file_name)
    logger.info(args)
    if args.search_space == 'darts':
        with open(args.darts_file_path, 'rb') as f:
            if args.darts_training_nums:
                all_data = pickle.load(f)[:args.darts_training_nums]
            else:
                all_data = pickle.load(f)
    else:
        nasbench_datas = data.build_datasets(args)
        all_data = data.dataset_all(args, nasbench_datas)
    for predictor in args.predictor_list:
        logger.info(
            f'==================  predictor type: {predictor}  ======================'
        )
        predictor_unsupervised(args,
                               predictor,
                               all_data,
                               train_epochs=args.epochs,
                               logger=logger)
Example #2
0
def generate_nasbench_101_all_datas(nasbench_data, args):
    all_data = data.dataset_all(args, nasbench_data)
    save_path = os.path.join(nas_bench_101_base_path, 'all_data_new.pkl')
    with open(save_path, 'wb') as fb:
        pickle.dump(all_data, fb)
Example #3
0
    parser.add_argument(
        '--dataname',
        type=str,
        default='cifar10-valid',
        choices=['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'],
        help='The evaluation of dataset of NASBench-201.')
    args = parser.parse_args()

    if args.search_space == 'nasbench_101':
        args.seq_len = 120
        with open(nas_bench_101_all_data, 'rb') as fpkl:
            all_data = pickle.load(fpkl)
    elif args.search_space == 'nasbench_201':
        args.seq_len = 96  # 5461
        nasbench_datas = data.build_datasets(args)
        all_data = data.dataset_all(args, nasbench_datas)
    else:
        raise NotImplementedError(
            'This search space does not support at present!')

    path_based_encoding = [
        tuple(map(int, d['pe_path_enc_vec'].tolist())) for d in all_data
    ]
    path_based_position_aware_encoding = [
        tuple(map(int, d['pe_path_enc_aware_vec'].tolist())) for d in all_data
    ]
    print('path_based encoding', len(path_based_encoding),
          len(set(path_based_encoding)))
    print('position_aware_path_based_encoding',
          len(path_based_position_aware_encoding),
          len(set(path_based_position_aware_encoding)))
Example #4
0
def main(args):
    file_name = 'log_%s_%d' % ('gpus', args.gpu)
    logger = setup_logger(file_name,
                          args.save_dir,
                          args.gpu,
                          log_level='DEBUG',
                          filename='%s.txt' % file_name)
    logger.info(args)
    if args.search_space == 'nasbench_101':
        with open(nas_bench_101_all_data, 'rb') as fpkl:
            all_data = pickle.load(fpkl)
    elif args.search_space == 'nasbench_201':
        nasbench_datas = data.build_datasets(args)
        all_data = data.dataset_all(args, nasbench_datas)
    elif args.search_space == 'darts':
        with open(darts_converted_with_label, 'rb') as fb:
            all_data = pickle.load(fb)
    else:
        raise NotImplementedError(
            f'The search space {args.search_space} does not support now!')

    for k in range(args.trails):
        seed = random_id_int(4)
        set_random_seed(seed)
        s_results_dict = defaultdict(list)
        k_results_dict = defaultdict(list)
        duration_dict = defaultdict(list)
        logger.info(
            f'======================  Trails {k} Begin Setting Seed to {seed} ==========================='
        )
        for budget in args.search_budget:
            train_data, test_data = data.dataset_split_idx_predictive_comparison(
                all_data, budget)
            print(
                f'budget: {budget}, train data size: {len(train_data)}, test data size: {len(test_data)}'
            )
            if args.compare_supervised == 'T':
                logger.info(
                    f'====  predictor type: SUPERVISED, load pretrain model False, '
                    f'search budget is {budget}. Training epoch is {args.epochs} ===='
                )
                spearman_corr, kendalltau_corr, duration = predictor_comparision(
                    args,
                    'SS_RL',
                    train_data,
                    test_data,
                    flag=False,
                    train_epochs=args.epochs,
                    logger=logger)
                if math.isnan(spearman_corr):
                    spearman_corr = 0
                if math.isnan(kendalltau_corr):
                    kendalltau_corr = 0
                s_results_dict[f'supervised#{budget}#{args.epochs}'].append(
                    spearman_corr)
                k_results_dict[f'supervised#{budget}#{args.epochs}'].append(
                    kendalltau_corr)
                duration_dict[f'supervised#{budget}#{args.epochs}'].append(
                    duration)
            for predictor_type, dir in zip(args.predictor_list, args.load_dir):
                logger.info(
                    f'====  predictor type: {predictor_type}, load pretrain model True. '
                    f'Search budget is {budget}. Training epoch is {args.epochs}. '
                    f'The model save dir is {dir.split("/")[-1][:-3]}  ====')
                spearman_corr, kendalltau_corr, duration = predictor_comparision(
                    args,
                    predictor_type,
                    train_data,
                    test_data,
                    flag=True,
                    load_dir=dir,
                    train_epochs=args.epochs,
                    logger=logger)
                if math.isnan(spearman_corr):
                    spearman_corr = 0
                if math.isnan(kendalltau_corr):
                    kendalltau_corr = 0
                s_results_dict[predictor_type + '#' + str(budget) + '#' +
                               str(args.epochs)].append(spearman_corr)
                k_results_dict[predictor_type + '#' + str(budget) + '#' +
                               str(args.epochs)].append(kendalltau_corr)
                duration_dict[predictor_type + '#' + str(budget) + '#' +
                              str(args.epochs)].append(duration)
        file_id = random_id(6)
        save_path = os.path.join(
            args.save_dir,
            f'{file_id}_{args.predictor_list[0]}_{args.search_space.split("_")[-1]}_{args.gpu}_{k}.pkl'
        )
        with open(save_path, 'wb') as fp:
            pickle.dump(s_results_dict, fp)
            pickle.dump(k_results_dict, fp)
            pickle.dump(duration_dict, fp)