Example #1
0
                    'e':
                    float(data[pmask]['pl_orbeccen'].iloc[i]),
                    'omega':
                    0
                })

            # create REBOUND simulation
            sim = generate(objects)

            print(objects)
            # year long integrations, timestep = 1 hour
            sim_data = integrate(sim, objects, 20 * objects[-1]['P'],
                                 int(20 * objects[-1]['P'] * 24))

            # collect the analytics from the simulation
            ttv_data = analyze(sim_data)

            #if name=='Kepler-30':
            #    import pdb; pdb.set_trace()

            # save simulation data
            for i in range(pmask.sum()):
                iname = data[pmask].iloc[i].name
                data.at[iname, 'ttv'] = np.percentile(
                    np.abs(ttv_data['planets'][i]['ttv']) * 24 * 60, 90)

    mask = (data.ttv > 1) & (data.pl_ttvflag == 1)
    print(data[mask].sort_values('ttv', ascending=False).get([
        'pl_name', 'pl_orbper', 'pl_orbeccen', 'st_mass', 'st_optmag', 'ttv',
        'pl_disc_refname', 'pl_def_refname', 'pl_ttvflag'
    ]))
Example #2
0
def get_ttv(objects, ndays=60, ttvfast=True):
    sim = generate(objects)
    sim_data = integrate(sim, objects, ndays, ndays * 24 * 2)  # dt=30 minutes
    return analyze(sim_data, ttvfast=ttvfast)
Example #3
0
            'm': args.mass1,
            'P': args.period1,
            'inc': 3.14159 / 2,
            'e': 0,
            'omega': 0
        },
        {
            'm': (ypred[i, 1]) * mearth / msun,
            'P': ypred[i, 0],
            'inc': 3.14159 / 2,
            'e': ypred[i, 3],
            'omega': ypred[i, 2]
        },
    ]
    sim_data = generate(pred, max(data[:, 1]), int(max(data[:, 1]) * 24))
    ttv_pred = analyze(sim_data)

    ml_error = lambda x: x  # TODO

    nlstats = {
        'marginals': [
            {
                'median': 0,
                'sigma': 0
            },  # Tmid
            {
                'median': pred[1]['P'],
                'sigma': 0
            },  # P1
            {
                'median': pred[2]['P'],
Example #4
0
def nbody_limits(newobj, nlstats, n=1):
    # TODO create wrapper?
    upper = np.copy(ttv)
    lower = np.copy(ttv)

    obj = copy.deepcopy(newobj)
    obj[2]['m'] = nlstats['marginals'][3][
        'median'] - n * nlstats['marginals'][3]['sigma']
    obj[2]['omega'] = nlstats['marginals'][5][
        'median'] - n * nlstats['marginals'][5]['sigma']
    sim_data = generate(obj, newobj[1]['P'] * (len(ttv) + 1),
                        int((len(ttv) + 1) * newobj[1]['P'] * 24))
    ttv_data = analyze(sim_data)
    for i in range(len(ttv_data['planets'][0]['ttv'])):
        try:
            upper[i] = max(upper[i], ttv_data['planets'][0]['ttv'][i])
            lower[i] = min(lower[i], ttv_data['planets'][0]['ttv'][i])
        except:
            pass

    obj = copy.deepcopy(newobj)
    obj[2]['m'] = nlstats['marginals'][3][
        'median'] - n * nlstats['marginals'][3]['sigma']
    sim_data = generate(obj, newobj[1]['P'] * (len(ttv) + 1),
                        int((len(ttv) + 1) * newobj[1]['P'] * 24))
    ttv_data = analyze(sim_data)
    for i in range(len(ttv_data['planets'][0]['ttv'])):
        try:
            upper[i] = max(upper[i], ttv_data['planets'][0]['ttv'][i])
            lower[i] = min(lower[i], ttv_data['planets'][0]['ttv'][i])
        except:
            pass

    obj = copy.deepcopy(newobj)
    obj[2]['m'] = nlstats['marginals'][3][
        'median'] + n * nlstats['marginals'][3]['sigma']
    sim_data = generate(obj, newobj[1]['P'] * (len(ttv) + 1),
                        int((len(ttv) + 1) * newobj[1]['P'] * 24))
    ttv_data = analyze(sim_data)
    for i in range(len(ttv_data['planets'][0]['ttv'])):
        try:
            upper[i] = max(upper[i], ttv_data['planets'][0]['ttv'][i])
            lower[i] = min(lower[i], ttv_data['planets'][0]['ttv'][i])
        except:
            pass

    obj = copy.deepcopy(newobj)
    obj[2]['m'] = nlstats['marginals'][3][
        'median'] - n * nlstats['marginals'][3]['sigma']
    obj[2]['omega'] = nlstats['marginals'][5][
        'median'] + n * nlstats['marginals'][5]['sigma']
    sim_data = generate(obj, newobj[1]['P'] * (len(ttv) + 1),
                        int((len(ttv) + 1) * newobj[1]['P'] * 24))
    ttv_data = analyze(sim_data)
    for i in range(len(ttv_data['planets'][0]['ttv'])):
        try:
            upper[i] = max(upper[i], ttv_data['planets'][0]['ttv'][i])
            lower[i] = min(lower[i], ttv_data['planets'][0]['ttv'][i])
        except:
            pass

    obj = copy.deepcopy(newobj)
    obj[2]['m'] = nlstats['marginals'][3][
        'median'] + n * nlstats['marginals'][3]['sigma']
    obj[2]['omega'] = nlstats['marginals'][5][
        'median'] - n * nlstats['marginals'][5]['sigma']
    sim_data = generate(obj, newobj[1]['P'] * (len(ttv) + 1),
                        int((len(ttv) + 1) * newobj[1]['P'] * 24))
    ttv_data = analyze(sim_data)
    for i in range(len(ttv_data['planets'][0]['ttv'])):
        try:
            upper[i] = max(upper[i], ttv_data['planets'][0]['ttv'][i])
            lower[i] = min(lower[i], ttv_data['planets'][0]['ttv'][i])
        except:
            pass

    obj = copy.deepcopy(newobj)
    obj[2]['m'] = nlstats['marginals'][3][
        'median'] + n * nlstats['marginals'][3]['sigma']
    obj[2]['omega'] = nlstats['marginals'][5][
        'median'] + n * nlstats['marginals'][5]['sigma']
    sim_data = generate(obj, newobj[1]['P'] * (len(ttv) + 1),
                        int((len(ttv) + 1) * newobj[1]['P'] * 24))
    ttv_data = analyze(sim_data)
    for i in range(len(ttv_data['planets'][0]['ttv'])):
        try:
            upper[i] = max(upper[i], ttv_data['planets'][0]['ttv'][i])
            lower[i] = min(lower[i], ttv_data['planets'][0]['ttv'][i])
        except:
            pass
    return upper, lower
            # add longitude of ascending node
        },
        {
            'm': [2 * mjup / msun, 10 * mjup / msun],
            'P': [6, 9],
            'inc': [np.pi / 2 * 0.8, np.pi / 2 * 0.9],
            'e': [0.05, 0.075],
            'omega': [np.pi / 4, np.pi / 2],
        },
    ]

    # run original simulation
    sim = generate(objects)
    sim_data = integrate(sim, objects, 180, 180 *
                         24)  # year long integrations, timestep = 1 minute
    ttv_data_og = analyze(sim_data)

    # create a plot
    f = plt.figure(figsize=(9, 13))
    plt.subplots_adjust()
    ax = [
        plt.subplot2grid((6, 2), (0, 0)),
        plt.subplot2grid((6, 2), (1, 0)),
        plt.subplot2grid((6, 2), (2, 0)),
        plt.subplot2grid((6, 2), (3, 0)),
        plt.subplot2grid((6, 2), (4, 0)),
        plt.subplot2grid((6, 2), (5, 0)),
        plt.subplot2grid((6, 2), (1, 1)),
        plt.subplot2grid((6, 2), (2, 1)),
        plt.subplot2grid((6, 2), (3, 1)),
        plt.subplot2grid((6, 2), (4, 1)),