epsilon = nb.constants.AU#/nb.constants.PC #Smoothing parameter d = 1.0e14 #/nb.constants.PC alpha = 0.0001 #adaptive time step parameter N = 500 bodies, distribution = nb.icc.plummer(N, d) def mass_colors(snapshots, time_step): curr_masses = snapshots[time_step, :, 6] norm_mass = (curr_masses - curr_masses.min()) / (curr_masses.max() - curr_masses.min()) cmap = cm.get_cmap("RdBu") return [cmap(abs(1.0 - norm_mass[i])) for i in range(norm_mass.shape[0])] snapshot_storage = SnapshotStorage() snapshot_storage.append(bodies) snapshot_renderer = SnapshotRenderer.for_clusters(snapshot_storage, recoloring_func=mass_colors, bounds=[-2e14, 2e14], verbose=1, angle=[45, 45]) #snapshot_renderer.display_step() for i, current_t in enumerate(nb.leapfrog_adaptive.simulate_step(bodies, G=nb.constants.G, epsilon=epsilon, dt_output=dt_output, alpha=alpha, max_dt_bins=5)): if current_t >= total_time: break print "{}/{}".format(current_t/nb.constants.YR, total_time/nb.constants.YR) snapshot_storage.append(bodies) #snapshot_renderer.display_step() #nb.constants.G, nb.constants.SOLAR_MASS, nb.constants.YR = nb.constants.codetounits() #Back to SI units
[1 * nb.constants.AU, 0.0, 0.0]]) bodies.m = np.array([nb.constants.SOLAR_MASS, 3.3e23, 4.86e24, 5.97e24]) bodies.v = np.array([ [0.0, 0.0, 0.0], [0.0, 47362, 0.0], [0.0, -35020, 0.0], [0.0, 29780, 0.0]]) total_time = 10 * nb.constants.YR dt_min = 0.000001 * nb.constants.YR epsilon = 0.2 alpha = 0.001 #adaptive time step parameter dt_output = 0.01 * nb.constants.YR snapshot_storage = SnapshotStorage() snapshot_storage.append(bodies.r) snapshot_renderer = SnapshotRenderer.for_orbits(snapshot_storage, bounds=(-nb.constants.AU, nb.constants.AU)) snapshot_renderer.display_step() for i, current_t in enumerate(leapfrog_adaptive.simulate_step(bodies, dt_min, G=nb.constants.G, epsilon=epsilon, dt_output=dt_output, alpha=alpha)): if current_t >= total_time: break print "{}/{}".format(current_t, total_time) snapshot_storage.append(bodies.r) snapshot_renderer.display_step()
[0.0, -35020, 0.0], [0.0, 29780, 0.0]]) total_time = 10 * nb.constants.YR dt_min = 0.000001 * nb.constants.YR epsilon = 0.2 alpha = 0.001 #adaptive time step parameter dt_output = 1.0 * nb.constants.YR bodies_phys = bodies.clone() conversion_params = nb.constants.convert_to_sim_units(bodies) space_coeff = nb.constants.space_coeff(*conversion_params) time_coeff = nb.constants.time_coeff(*conversion_params) snapshot_storage = SnapshotStorage() snapshot_storage.append(bodies_phys) snapshot_renderer = SnapshotRenderer.for_orbits(snapshot_storage, bounds=(-nb.constants.AU, nb.constants.AU)) snapshot_renderer.display_step() for i, current_t in enumerate(nb.leapfrog_adaptive.simulate_step(bodies, epsilon=epsilon / space_coeff, dt_output=dt_output / space_coeff, alpha=alpha, max_dt_bins=5)): if current_t >= total_time / time_coeff: break print "{}/{}".format(current_t * time_coeff / nb.constants.YR, total_time / nb.constants.YR) bodies_phys = bodies.clone() nb.constants.convert_from_sim_units(bodies_phys, *conversion_params)
bodies.v = np.array([[0.0, 0.0, 0.0], [0.0, 47362, 0.0], [0.0, -35020, 0.0], [0.0, 29780, 0.0]]) total_time = 10 * nb.constants.YR dt_min = 0.000001 * nb.constants.YR epsilon = 0.2 alpha = 0.001 #adaptive time step parameter dt_output = 1.0 * nb.constants.YR bodies_phys = bodies.clone() conversion_params = nb.constants.convert_to_sim_units(bodies) space_coeff = nb.constants.space_coeff(*conversion_params) time_coeff = nb.constants.time_coeff(*conversion_params) snapshot_storage = SnapshotStorage() snapshot_storage.append(bodies_phys) snapshot_renderer = SnapshotRenderer.for_orbits(snapshot_storage, bounds=(-nb.constants.AU, nb.constants.AU)) snapshot_renderer.display_step() for i, current_t in enumerate( nb.leapfrog_adaptive.simulate_step(bodies, epsilon=epsilon / space_coeff, dt_output=dt_output / space_coeff, alpha=alpha, max_dt_bins=5)): if current_t >= total_time / time_coeff: break
bodies, distribution = nb.icc.plummer(N, d) bodies_phys = bodies.clone() conversion_params = nb.constants.convert_to_sim_units(bodies) def mass_colors(snapshots, time_step): curr_masses = snapshots[time_step, :, 6] norm_mass = (curr_masses - curr_masses.min()) / (curr_masses.max() - curr_masses.min()) cmap = cm.get_cmap("RdBu") return [cmap(abs(1.0 - norm_mass[i])) for i in range(norm_mass.shape[0])] snapshot_storage = SnapshotStorage() snapshot_storage.append(bodies_phys) space_coeff = nb.constants.space_coeff(*conversion_params) snapshot_renderer = SnapshotRenderer.for_clusters(snapshot_storage, recoloring_func=mass_colors, bounds=[-2e14, 2e14], verbose=1, angle=[45, 45]) #snapshot_renderer.display_step() time_coeff = nb.constants.time_coeff(*conversion_params) for i, current_t in enumerate( nb.leapfrog_adaptive.simulate_step(bodies, epsilon=epsilon / space_coeff, alpha=alpha,