Example #1
0
    def __init__(self, array, BoxSize, comm=None, root=0, **kwargs):
        if comm.rank == root:
            array = numpy.array(array)
            if array.dtype.kind == 'c':
                # transform to real for the correct shape
                array = numpy.fft.irfftn(array)
                array[...] *= numpy.prod(array.shape)
            shape = array.shape
            dtype = array.dtype
        else:
            array, dtype, shape = [None] * 3

        dtype = comm.bcast(dtype, root=root)
        shape = comm.bcast(shape, root=root)

        assert len(shape) in (2, 3)

        Nmesh = shape

        empty = numpy.empty((0, ), dtype)

        MeshSource.__init__(self, comm, Nmesh, BoxSize, empty.real.dtype)

        self.field = self.pm.create(type='real')

        if comm.rank != root:
            array = empty  # ignore data from other ranks.
        else:
            array = array.ravel()

        # fill the field with the array
        self.field.unravel(array)
Example #2
0
    def __init__(self,
                 Plin,
                 BoxSize,
                 Nmesh,
                 seed=None,
                 unitary_amplitude=False,
                 inverted_phase=False,
                 remove_variance=None,
                 comm=None):

        self.Plin = Plin

        # cosmology and communicator
        self.comm = comm

        self.attrs.update(attrs_to_dict(Plin, 'plin.'))

        # set the seed randomly if it is None
        if seed is None:
            if self.comm.rank == 0:
                seed = numpy.random.randint(0, 4294967295)
            seed = self.comm.bcast(seed)
        self.attrs['seed'] = seed
        if remove_variance is not None:
            unitary_amplitude = remove_variance

        self.attrs['unitary_amplitude'] = unitary_amplitude
        self.attrs['inverted_phase'] = inverted_phase

        MeshSource.__init__(self,
                            BoxSize=BoxSize,
                            Nmesh=Nmesh,
                            dtype='f4',
                            comm=comm)
Example #3
0
    def __init__(self, array, BoxSize, comm=None, root=0, **kwargs):
        if comm.rank == root:
            array = numpy.array(array)
            if array.dtype.kind == 'c':
                # transform to real for the correct shape
                array = numpy.fft.irfftn(array)
                array[...] *= numpy.prod(array.shape)
            shape = array.shape
            dtype = array.dtype
        else:
            array, dtype, shape = [None] * 3

        dtype = comm.bcast(dtype, root=root)
        shape = comm.bcast(shape, root=root)

        assert len(shape) in (2, 3)

        Nmesh = shape

        empty = numpy.empty((0,), dtype)

        MeshSource.__init__(self, comm, Nmesh, BoxSize, empty.real.dtype)

        self.field = self.pm.create(type='real')

        if comm.rank != root:
            array = empty # ignore data from other ranks.
        else:
            array = array.ravel()

        # fill the field with the array
        self.field.unravel(array)
Example #4
0
    def __init__(self, source, Nmesh, BoxSize, dtype, selection, position,
                 weight, value, interlaced, compensated, resampler):

        from nbodykit.source.catalog import MultipleSpeciesCatalog

        if not isinstance(source, MultipleSpeciesCatalog):
            raise TypeError(("the input source for MultipleSpeciesCatalogMesh "
                             "must be a MultipleSpeciesCatalog"))

        MeshSource.__init__(self,
                            Nmesh=Nmesh,
                            BoxSize=BoxSize,
                            dtype=dtype,
                            comm=source.comm)

        self.source = source
        self.weight = weight
        self.position = position
        self.value = value
        self.selection = selection
        self.interlaced = interlaced
        self.compensated = compensated
        self.resampler = resampler
        self.dtype = dtype

        self.species = source.species
Example #5
0
    def __init__(self, Plin, BoxSize, Nmesh, seed=None,
            unitary_amplitude=False,
            inverted_phase=False,
            remove_variance=None,
            comm=None):

        self.Plin = Plin

        # cosmology and communicator
        self.comm    = comm

        self.attrs.update(attrs_to_dict(Plin, 'plin.'))

        # set the seed randomly if it is None
        if seed is None:
            if self.comm.rank == 0:
                seed = numpy.random.randint(0, 4294967295)
            seed = self.comm.bcast(seed)
        self.attrs['seed'] = seed
        if remove_variance is not None:
            unitary_amplitude = remove_variance

        self.attrs['unitary_amplitude'] = unitary_amplitude
        self.attrs['inverted_phase'] = inverted_phase

        MeshSource.__init__(self, BoxSize=BoxSize, Nmesh=Nmesh, dtype='f4', comm=comm)
Example #6
0
    def __init__(self, path, dataset, comm=None, **kwargs):

        self.path = path
        self.dataset = dataset
        self.comm = comm

        # update the meta-data
        self.attrs.update(kwargs)
        with BigFileMPI(comm=self.comm, filename=path)[dataset] as ff:
            for key in ff.attrs:
                v = ff.attrs[key]
                if isinstance(v, string_types) and v.startswith('json://'):
                    self.attrs[key] = json.loads(v[7:], cls=JSONDecoder)
                else:
                    self.attrs[key] = numpy.squeeze(v)

            # fourier space or config space
            if ff.dtype.kind == 'c':
                self.isfourier = True
                if ff.dtype.itemsize == 16:
                    dtype = 'f8'
                else:
                    dtype = 'f4'
            else:
                self.isfourier = False
                if ff.dtype.itemsize == 8:
                    dtype = 'f8'
                else:
                    dtype = 'f4'

        # determine Nmesh
        if 'ndarray.shape' not in self.attrs:
            raise ValueError(
                "`ndarray.shape` should be stored in the Bigfile `attrs` to determine `Nmesh`"
            )

        if 'Nmesh' not in self.attrs:
            raise ValueError(
                "`ndarray.shape` should be stored in the Bigfile `attrs` to determine `Nmesh`"
            )

        Nmesh = self.attrs['Nmesh']
        BoxSize = self.attrs['BoxSize']

        MeshSource.__init__(self,
                            BoxSize=BoxSize,
                            Nmesh=Nmesh,
                            dtype=dtype,
                            comm=comm)
Example #7
0
    def __new__(cls,
                source,
                BoxSize,
                Nmesh,
                dtype,
                weight,
                value,
                selection,
                position='Position',
                interlaced=False,
                compensated=False,
                window='cic',
                **kwargs):

        # source here must be a CatalogSource
        assert isinstance(source, CatalogSourceBase)

        # new, empty CatalogSource
        obj = CatalogSourceBase.__new__(cls, source.comm)

        # copy over size from the CatalogSource
        obj._size = source.size
        obj._csize = source.csize

        # copy over the necessary meta-data to attrs
        obj.attrs['BoxSize'] = BoxSize
        obj.attrs['Nmesh'] = Nmesh
        obj.attrs['interlaced'] = interlaced
        obj.attrs['compensated'] = compensated
        obj.attrs['window'] = window

        # copy meta-data from source too
        obj.attrs.update(source.attrs)

        # store others as straight attributes
        obj.dtype = dtype
        obj.weight = weight
        obj.value = value
        obj.selection = selection
        obj.position = position

        # add in the Mesh Source attributes
        MeshSource.__init__(obj, obj.comm, Nmesh, BoxSize, dtype)

        # finally set the base as the input CatalogSource
        # NOTE: set this AFTER MeshSource.__init__()
        obj.base = source

        return obj
Example #8
0
    def __init__(self, path, dataset, comm=None, **kwargs):

        self.path    = path
        self.dataset = dataset
        self.comm    = comm

        # update the meta-data
        self.attrs.update(kwargs)
        with FileMPI(comm=self.comm, filename=path)[dataset] as ff:
            for key in ff.attrs:
                v = ff.attrs[key]
                if isinstance(v, string_types) and v.startswith('json://'):
                    self.attrs[key] = json.loads(v[7:], cls=JSONDecoder)
                else:
                    self.attrs[key] = numpy.squeeze(v)

            # fourier space or config space
            if ff.dtype.kind == 'c':
                self.isfourier = True
                if ff.dtype.itemsize == 16:
                    dtype = 'f8'
                else:
                    dtype = 'f4'
            else:
                self.isfourier = False
                if ff.dtype.itemsize == 8:
                    dtype = 'f8'
                else:
                    dtype = 'f4'

        # determine Nmesh
        if 'ndarray.shape' not in self.attrs:
            raise ValueError("`ndarray.shape` should be stored in the Bigfile `attrs` to determine `Nmesh`")

        if 'Nmesh' not in self.attrs:
            raise ValueError("`ndarray.shape` should be stored in the Bigfile `attrs` to determine `Nmesh`")

        Nmesh = self.attrs['Nmesh']
        BoxSize = self.attrs['BoxSize']

        MeshSource.__init__(self, BoxSize=BoxSize, Nmesh=Nmesh, dtype=dtype, comm=comm)
Example #9
0
    def __init__(self,
                 source,
                 BoxSize,
                 Nmesh,
                 dtype,
                 weight,
                 value,
                 selection,
                 position='Position',
                 interlaced=False,
                 compensated=False,
                 window='cic',
                 **kwargs):

        # source here must be a CatalogSource
        assert isinstance(source, CatalogSourceBase)

        # copy over the necessary meta-data to attrs
        self.attrs['BoxSize'] = BoxSize
        self.attrs['Nmesh'] = Nmesh
        self.attrs['interlaced'] = interlaced
        self.attrs['compensated'] = compensated
        self.attrs['window'] = window

        # copy meta-data from source too
        self.attrs.update(source.attrs)

        self.source = source

        # store others as straight attributes
        self.dtype = dtype
        self.weight = weight
        self.value = value
        self.selection = selection
        self.position = position

        # add in the Mesh Source attributes
        MeshSource.__init__(self, source.comm, Nmesh, BoxSize, dtype)
Example #10
0
    def __init__(self,
                 source,
                 Nmesh,
                 BoxSize,
                 Position,
                 dtype='f4',
                 resampler='cic',
                 compensated=False,
                 interlaced=False,
                 Value=None,
                 Selection=None,
                 Weight=None,
                 **kwargs):
        from nbodykit.base.catalog import CatalogSourceBase

        assert isinstance(source, CatalogSourceBase)

        self._columns = {}

        # copy meta-data from source too
        self.attrs.update(source.attrs)

        MeshSource.__init__(self, source.comm, Nmesh, BoxSize, dtype)

        self.source = source

        # store others as straight attributes
        self.dtype = dtype

        self.Position = Position
        self.Weight = Weight
        self.Value = Value
        self.Selection = Selection

        self.attrs['interlaced'] = interlaced
        self.attrs['compensated'] = compensated
        self.attrs['resampler'] = str(resampler)
Example #11
0
    def __init__(self, source, Nmesh, BoxSize,
                    Position,
                    dtype='f4',
                    resampler='cic',
                    compensated=False,
                    interlaced=False,
                    Value=None,
                    Selection=None,
                    Weight=None,
                    **kwargs):
        from nbodykit.base.catalog import CatalogSourceBase

        assert isinstance(source, CatalogSourceBase)

        self._columns = {}

        # copy meta-data from source too
        self.attrs.update(source.attrs)

        MeshSource.__init__(self, source.comm,
                                  Nmesh,
                                  BoxSize,
                                  dtype)

        self.source = source

        # store others as straight attributes
        self.dtype = dtype

        self.Position = Position
        self.Weight = Weight
        self.Value = Value
        self.Selection = Selection

        self.attrs['interlaced'] = interlaced
        self.attrs['compensated'] = compensated
        self.attrs['resampler'] = str(resampler)
Example #12
0
    def save(self, output, dataset='Field', mode='real'):
        """
        Save the mesh as a :class:`~nbodykit.source.mesh.bigfile.BigFileMesh`
        on disk, either in real or complex space.

        Parameters
        ----------
        output : str
            name of the bigfile file
        dataset : str, optional
            name of the bigfile data set where the field is stored
        mode : str, optional
            real or complex; the form of the field to store
        """
        return MeshSource.save(self, output, dataset=dataset, mode=mode)
Example #13
0
    def __finalize__(self, other):
        """
        Finalize the creation of a CatalogMesh object by copying over
        attributes from a second CatalogMesh.

        This also copies over the relevant MeshSource attributes via a
        call to :func:`MeshSource.__finalize__`.

        Parameters
        ----------
        obj : CatalogMesh
            the second CatalogMesh to copy over attributes from
        """
        if isinstance(other, CatalogSourceBase):
            self = CatalogSourceBase.__finalize__(self, other)

        if isinstance(other, MeshSource):
            self = MeshSource.__finalize__(self, other)

        return self
Example #14
0
    def __init__(self,
            data,
            ran,
            Nmesh,
            bias=1.0,
            f = 0.0,
            los = [0, 0, 1],
            R=20,
            position='Position',
            revert_rsd_random=False,
            scheme='LGS',
            BoxSize=None,
            comm=None):

        assert scheme in ['LGS', 'LF2', 'LRR']

        assert isinstance(data, CatalogSource)
        assert isinstance(ran, CatalogSource)

        from pmesh.pm import ParticleMesh

        if Nmesh is None:
            Nmesh = data.attrs['Nmesh']
        _Nmesh = numpy.empty(3, dtype='i8')
        _Nmesh[...] = Nmesh

        if BoxSize is None:
            BoxSize = data.attrs['BoxSize']

        los = numpy.array(los, dtype='f8', copy=True)
        los /= (los ** 2).sum()

        assert len(los) == 3
        assert (~numpy.isnan(los)).all()

        pm = ParticleMesh(BoxSize=BoxSize, Nmesh=_Nmesh, comm=comm)
        self.pm = pm

        if (self.pm.BoxSize / self.pm.Nmesh).max() > R:
            if comm.rank == 0:
                warnings.warn("The smoothing radius smaller than the mesh cell size. This may produce undesired numerical results.")

        assert position in data.columns
        assert position in ran.columns

        self.position = position

        MeshSource.__init__(self, comm, pm.Nmesh.copy(), pm.BoxSize.copy(), pm.dtype)

        self.attrs['bias'] = bias
        self.attrs['f'] = f
        self.attrs['los'] = los
        self.attrs['R'] = R
        self.attrs['scheme'] = scheme
        self.attrs['revert_rsd_random'] = bool(revert_rsd_random)

        self.data = data
        self.ran = ran

        if self.comm.rank == 0:
            self.logger.info("Reconstruction for bias=%g, f=%g, smoothing R=%g los=%s" % (self.attrs['bias'], self.attrs['f'], self.attrs['R'], str(self.attrs['los'])))
            self.logger.info("Reconstruction scheme = %s" % (self.attrs['scheme']))
Example #15
0
    def __init__(self,
            data,
            ran,
            Nmesh,
            bias=1.0,
            f = 0.0,
            los = [0, 0, 1],
            R=20,
            position='Position',
            revert_rsd_random=False,
            scheme='LGS',
            BoxSize=None):

        assert scheme in ['LGS', 'LF2', 'LRR']

        assert isinstance(data, CatalogSource)
        assert isinstance(ran, CatalogSource)

        comm = data.comm

        assert data.comm == ran.comm

        from pmesh.pm import ParticleMesh

        if Nmesh is None:
            Nmesh = data.attrs['Nmesh']
        _Nmesh = numpy.empty(3, dtype='i8')
        _Nmesh[...] = Nmesh

        if BoxSize is None:
            BoxSize = data.attrs['BoxSize']

        los = numpy.array(los, dtype='f8', copy=True)
        los /= (los ** 2).sum()

        assert len(los) == 3
        assert (~numpy.isnan(los)).all()

        pm = ParticleMesh(BoxSize=BoxSize, Nmesh=_Nmesh, comm=comm)
        self.pm = pm

        if (self.pm.BoxSize / self.pm.Nmesh).max() > R:
            if comm.rank == 0:
                warnings.warn("The smoothing radius smaller than the mesh cell size. This may produce undesired numerical results.")

        assert position in data.columns
        assert position in ran.columns

        self.position = position

        MeshSource.__init__(self, comm, pm.Nmesh.copy(), pm.BoxSize.copy(), pm.dtype)

        self.attrs['bias'] = bias
        self.attrs['f'] = f
        self.attrs['los'] = los
        self.attrs['R'] = R
        self.attrs['scheme'] = scheme
        self.attrs['revert_rsd_random'] = bool(revert_rsd_random)

        self.data = data
        self.ran = ran

        if self.comm.rank == 0:
            self.logger.info("Reconstruction for bias=%g, f=%g, smoothing R=%g los=%s" % (self.attrs['bias'], self.attrs['f'], self.attrs['R'], str(self.attrs['los'])))
            self.logger.info("Reconstruction scheme = %s" % (self.attrs['scheme']))