Example #1
0
def Parameter(
        *size,
        initializer=uniform(bound=0.1),
):
    m = nn.Parameter(torch.zeros(*size))
    initializer(m)
    return m
Example #2
0
def Embedding(num_embeddings,
              embedding_dim,
              padding_idx=None,
              initializer=uniform(bound=0.1)):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    if initializer is not None:
        initializer(m.weight)
    if padding_idx is not None:
        m.weight.data[padding_idx, :].fill_(0.)
    return m
Example #3
0
def LSTMCell(
        input_size,
        hidden_size,
        bias=True,
        initializer=uniform(bound=0.1),
):
    m = nn.LSTMCell(input_size, hidden_size, bias)
    for name, param in m.named_parameters():
        if 'weight' in name or 'bias' in name:
            initializer(param)
    return m
Example #4
0
def Linear(
        in_dim,
        out_dim,
        bias=True,
        weight_initializer=uniform(bound=0.1),
        bias_initializer=constant(value=0.),
):
    m = nn.Linear(in_features=in_dim, out_features=out_dim, bias=bias)
    weight_initializer(m.weight)
    if bias:
        bias_initializer(m.bias)
    return m
Example #5
0
def LSTM(
        input_size,
        hidden_size,
        num_layers=1,
        bias=True,
        batch_first=False,
        dropout=0.,
        bidirectional=False,
        initializer=uniform(bound=0.1),
):
    """
    input_size: The number of expected features in the input `x`
    hidden_size: The number of features in the hidden state `h`
    num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
        would mean stacking two LSTMs together to form a `stacked LSTM`,
        with the second LSTM taking in outputs of the first LSTM and
        computing the final results. Default: 1
    bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
        Default: ``True``
    batch_first: If ``True``, then the input and output tensors are provided
        as (batch, seq, feature). Default: ``False``
    dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
        LSTM layer except the last layer, with dropout probability equal to
        :attr:`dropout`. Default: 0
    bidirectional: If ``True``, becomes a bidirectional LSTM. Default: ``False``
    """
    m = nn.LSTM(input_size,
                hidden_size,
                num_layers=num_layers,
                bias=bias,
                batch_first=batch_first,
                dropout=dropout,
                bidirectional=bidirectional)
    for p in m.parameters():
        initializer(p)
    return m