Example #1
0
data = np.array([[[1, 2, 3, 4], [2, 4, 5, 3], [0, 1, 2, 3]],
                 [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]])
data_2D = np.array([[1, 2, 3, 4], [2, 4, 5, 3]])
data_1D = np.array([1, 2])
data_4D = np.array([[[[1, 2, 3, 4], [2, 4, 5, 3], [0, 1, 2, 3]],
                     [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]],
                    [[[1, 2, 3, 4], [2, 4, 5, 3], [0, 1, 2, 3]],
                     [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]]])

header = {'CTYPE1': 'HPLN-TAN', 'CUNIT1': 'arcsec', 'CDELT1': 0.4,
          'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4,
          'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'arcsec', 'CDELT2': 0.5,
          'CRPIX2': 0, 'CRVAL2': 0, 'NAXIS2': 3,
          'CTYPE3': 'Time    ', 'CUNIT3': 'seconds', 'CDELT3': 0.3,
          'CRPIX3': 0, 'CRVAL3': 0, 'NAXIS3': 2}
wcs = WCS(header=header, naxis=3)
header_2D = {'CTYPE1': 'Time    ', 'CUNIT1': 'seconds', 'CDELT1': 0.4,
             'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4,
             'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'arcsec', 'CDELT2': 0.5,
             'CRPIX2': 0, 'CRVAL2': 0, 'NAXIS2': 2}
wcs_2D = WCS(header=header_2D, naxis=2)
header_4D = {'CTYPE1': 'Time    ', 'CUNIT1': 'seconds', 'CDELT1': 0.4,
             'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4,
             'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'arcsec', 'CDELT2': 0.5,
             'CRPIX2': 0, 'CRVAL2': 0, 'NAXIS2': 3,
             'CTYPE3': 'Time    ', 'CUNIT3': 'seconds', 'CDELT3': 0.4,
             'CRPIX3': 0, 'CRVAL3': 0, 'NAXIS3': 2,
             'CTYPE4': 'HPLN-TAN', 'CUNIT4': 'arcsec', 'CDELT4': 0.5,
             'CRPIX4': 0, 'CRVAL4': 0, 'NAXIS4': 2}
wcs_4D = WCS(header=header_4D, naxis=4)
header_1D = {'CTYPE1': 'Time    ', 'CUNIT1': 'seconds', 'CDELT1': 0.4,
Example #2
0
                                    [[2.252, 4.528, -5.372], [-2.876, 5.764, 6.264]]])
SOURCE_UNCERTAINTY_PHOTONS_NUV = np.sqrt(SOURCE_DATA_PHOTONS_NUV)
SOURCE_UNCERTAINTY_PHOTONS_FUV = np.sqrt(SOURCE_DATA_PHOTONS_FUV)

time_dim_len = SOURCE_DATA_DN.shape[0]
single_exposure_time = 2.
EXPOSURE_TIME = u.Quantity(np.zeros(time_dim_len)+single_exposure_time, unit=u.s)

# Define an sample wcs object
h0 = {
    'CTYPE1': 'WAVE    ', 'CUNIT1': 'Angstrom', 'CDELT1': 0.2, 'CRPIX1': 0, 'CRVAL1': 10,
    'NAXIS1': 3,
    'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'deg', 'CDELT2': 0.5, 'CRPIX2': 2, 'CRVAL2': 0.5, 'NAXIS2': 2,
    'CTYPE3': 'HPLN-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.4, 'CRPIX3': 2, 'CRVAL3': 1, 'NAXIS3': 2,
}
wcs0 = WCS(header=h0, naxis=3)

# Define sample meta
meta0 = {"detector type": "FUV", "OBSID": 1, "spectral window": "C II 1336"}

# Define sample extra coords
extra_coords0 = [("time", 0,
                  np.array([datetime.datetime(2017, 1, 1)+datetime.timedelta(seconds=i)
                             for i in range(time_dim_len)])),
                ("exposure time", 0, EXPOSURE_TIME)]
extra_coords1 = [("time", 0,
                  np.array([datetime.datetime(2017, 1, 1)+datetime.timedelta(seconds=i)
                             for i in range(time_dim_len, time_dim_len*2)])),
                ("exposure time", 0, EXPOSURE_TIME)]

# Define IRISSpectrogramCubes in various units.
Example #3
0
def read_iris_spectrograph_level2_fits(filenames, spectral_windows=None):
    """
    Reads IRIS level 2 spectrograph FITS from an OBS into an IRISSpectrograph instance.

    Parameters
    ----------
    filenames: `list` of `str` or `str`
        Filename of filenames to be read.  They must all be associated with the same
        OBS number.

    spectral_windows: iterable of `str` or `str`
        Spectral windows to extract from files.  Default=None, implies, extract all
        spectral windows.

    Returns
    -------
    result: `irispy.spectrograph.IRISSpectrograph`

    """
    if type(filenames) is str:
        filenames = [filenames]
    for f, filename in enumerate(filenames):
        hdulist = fits.open(filename)
        hdulist.verify('fix')
        if f == 0:
            # Determine number of raster positions in a scan
            raster_positions_per_scan = int(hdulist[0].header["NRASTERP"])
            # Collecting the window observations.
            windows_in_obs = np.array([
                hdulist[0].header["TDESC{0}".format(i)]
                for i in range(1, hdulist[0].header["NWIN"] + 1)
            ])
            # If spectral_window is not set then get every window.
            # Else take the appropriate windows
            if not spectral_windows:
                spectral_windows_req = windows_in_obs
                window_fits_indices = range(1, len(hdulist) - 2)
            else:
                if type(spectral_windows) is str:
                    spectral_windows_req = [spectral_windows]
                spectral_windows_req = np.asarray(spectral_windows_req,
                                                  dtype="U")
                window_is_in_obs = np.asarray([
                    window in windows_in_obs for window in spectral_windows_req
                ])
                if not all(window_is_in_obs):
                    missing_windows = window_is_in_obs == False
                    raise ValueError(
                        "Spectral windows {0} not in file {1}".format(
                            spectral_windows[missing_windows], filenames[0]))
                window_fits_indices = np.nonzero(
                    np.in1d(windows_in_obs, spectral_windows))[0] + 1
            # Generate top level meta dictionary from first file
            # main header.
            top_meta = {
                "TELESCOP": hdulist[0].header["TELESCOP"],
                "INSTRUME": hdulist[0].header["INSTRUME"],
                "DATA_LEV": hdulist[0].header["DATA_LEV"],
                "OBSID": hdulist[0].header["OBSID"],
                "OBS_DESC": hdulist[0].header["OBS_DESC"],
                "STARTOBS": parse_time(hdulist[0].header["STARTOBS"]),
                "ENDOBS": parse_time(hdulist[0].header["ENDOBS"]),
                "SAT_ROT": hdulist[0].header["SAT_ROT"] * u.deg,
                "AECNOBS": int(hdulist[0].header["AECNOBS"]),
                "FOVX": hdulist[0].header["FOVX"] * u.arcsec,
                "FOVY": hdulist[0].header["FOVY"] * u.arcsec,
                "SUMSPTRN": hdulist[0].header["SUMSPTRN"],
                "SUMSPTRF": hdulist[0].header["SUMSPTRF"],
                "SUMSPAT": hdulist[0].header["SUMSPAT"],
                "NEXPOBS": hdulist[0].header["NEXPOBS"],
                "NRASTERP": hdulist[0].header["NRASTERP"],
                "KEYWDDOC": hdulist[0].header["KEYWDDOC"]
            }
            # Initialize meta dictionary for each spectral_window
            window_metas = {}
            for i, window_name in enumerate(spectral_windows_req):
                if "FUV" in hdulist[0].header["TDET{0}".format(
                        window_fits_indices[i])]:
                    spectral_summing = hdulist[0].header["SUMSPTRF"]
                else:
                    spectral_summing = hdulist[0].header["SUMSPTRN"]
                window_metas[window_name] = {
                    "detector type":
                    hdulist[0].header["TDET{0}".format(
                        window_fits_indices[i])],
                    "spectral window":
                    hdulist[0].header["TDESC{0}".format(
                        window_fits_indices[i])],
                    "brightest wavelength":
                    hdulist[0].header["TWAVE{0}".format(
                        window_fits_indices[i])],
                    "min wavelength":
                    hdulist[0].header["TWMIN{0}".format(
                        window_fits_indices[i])],
                    "max wavelength":
                    hdulist[0].header["TWMAX{0}".format(
                        window_fits_indices[i])],
                    "SAT_ROT":
                    hdulist[0].header["SAT_ROT"],
                    "spatial summing":
                    hdulist[0].header["SUMSPAT"],
                    "spectral summing":
                    spectral_summing
                }
            # Create a empty list for every spectral window and each
            # spectral window is a key for the dictionary.
            data_dict = dict([(window_name, list())
                              for window_name in spectral_windows_req])
        # Determine extra coords for this raster.
        times = np.array([
            parse_time(hdulist[0].header["STARTOBS"]) +
            datetime.timedelta(seconds=s)
            for s in hdulist[-2].data[:, hdulist[-2].header["TIME"]]
        ])
        raster_positions = np.arange(int(hdulist[0].header["NRASTERP"]))
        pztx = hdulist[-2].data[:, hdulist[-2].header["PZTX"]] * u.arcsec
        pzty = hdulist[-2].data[:, hdulist[-2].header["PZTY"]] * u.arcsec
        xcenix = hdulist[-2].data[:, hdulist[-2].header["XCENIX"]] * u.arcsec
        ycenix = hdulist[-2].data[:, hdulist[-2].header["YCENIX"]] * u.arcsec
        obs_vrix = hdulist[-2].data[:,
                                    hdulist[-2].header["OBS_VRIX"]] * u.m / u.s
        ophaseix = hdulist[-2].data[:, hdulist[-2].header["OPHASEIX"]]
        exposure_times_fuv = hdulist[-2].data[:, hdulist[-2].
                                              header["EXPTIMEF"]] * u.s
        exposure_times_nuv = hdulist[-2].data[:, hdulist[-2].
                                              header["EXPTIMEN"]] * u.s
        # If OBS is raster, include raster positions.  Otherwise don't.
        if top_meta["NRASTERP"] > 1:
            general_extra_coords = [("time", 0, times),
                                    ("raster position", 0,
                                     np.arange(top_meta["NRASTERP"])),
                                    ("pztx", 0, pztx), ("pzty", 0, pzty),
                                    ("xcenix", 0, xcenix),
                                    ("ycenix", 0, ycenix),
                                    ("obs_vrix", 0, obs_vrix),
                                    ("ophaseix", 0, ophaseix)]
        else:
            general_extra_coords = [("time", 0, times), ("pztx", 0, pztx),
                                    ("pzty", 0, pzty), ("xcenix", 0, xcenix),
                                    ("ycenix", 0, ycenix),
                                    ("obs_vrix", 0, obs_vrix),
                                    ("ophaseix", 0, ophaseix)]
        for i, window_name in enumerate(spectral_windows_req):
            # Determine values of properties dependent on detector type.
            if "FUV" in hdulist[0].header["TDET{0}".format(
                    window_fits_indices[i])]:
                exposure_times = exposure_times_fuv
                DN_unit = iris_tools.DN_UNIT["FUV"]
                readout_noise = iris_tools.READOUT_NOISE["FUV"]
            elif "NUV" in hdulist[0].header["TDET{0}".format(
                    window_fits_indices[i])]:
                exposure_times = exposure_times_nuv
                DN_unit = iris_tools.DN_UNIT["NUV"]
                readout_noise = iris_tools.READOUT_NOISE["NUV"]
            else:
                raise ValueError(
                    "Detector type in FITS header not recognized.")
            # Derive WCS, data and mask for NDCube from file.
            # Sit-and-stare have a CDELT of 0 which causes issues in astropy WCS.
            # In this case, set CDELT to a tiny non-zero number.
            if hdulist[window_fits_indices[i]].header["CDELT3"] == 0:
                hdulist[window_fits_indices[i]].header["CDELT3"] = 1e-10
            wcs_ = WCS(hdulist[window_fits_indices[i]].header)
            data_mask = hdulist[window_fits_indices[i]].data == -200.
            # Derive extra coords for this spectral window.
            window_extra_coords = copy.deepcopy(general_extra_coords)
            window_extra_coords.append(("exposure time", 0, exposure_times))
            # Collect metadata relevant to single files.
            try:
                date_obs = parse_time(hdulist[0].header["DATE_OBS"])
            except ValueError:
                date_obs = None
            try:
                date_end = parse_time(hdulist[0].header["DATE_END"])
            except ValueError:
                date_end = None
            single_file_meta = {
                "SAT_ROT":
                hdulist[0].header["SAT_ROT"] * u.deg,
                "DATE_OBS":
                date_obs,
                "DATE_END":
                date_end,
                "HLZ":
                bool(int(hdulist[0].header["HLZ"])),
                "SAA":
                bool(int(hdulist[0].header["SAA"])),
                "DSUN_OBS":
                hdulist[0].header["DSUN_OBS"] * u.m,
                "IAECEVFL":
                hdulist[0].header["IAECEVFL"],
                "IAECFLAG":
                hdulist[0].header["IAECFLAG"],
                "IAECFLFL":
                hdulist[0].header["IAECFLFL"],
                "KEYWDDOC":
                hdulist[0].header["KEYWDDOC"],
                "detector type":
                hdulist[0].header["TDET{0}".format(window_fits_indices[i])],
                "spectral window":
                window_name,
                "OBSID":
                hdulist[0].header["OBSID"],
                "OBS_DESC":
                hdulist[0].header["OBS_DESC"],
                "STARTOBS":
                parse_time(hdulist[0].header["STARTOBS"]),
                "ENDOBS":
                parse_time(hdulist[0].header["ENDOBS"])
            }
            # Derive uncertainty of data
            uncertainty = u.Quantity(
                np.sqrt((hdulist[window_fits_indices[i]].data *
                         DN_unit).to(u.photon).value +
                        readout_noise.to(u.photon).value**2),
                unit=u.photon).to(DN_unit).value
            # Appending NDCube instance to the corresponding window key in dictionary's list.
            data_dict[window_name].append(
                IRISSpectrogramCube(hdulist[window_fits_indices[i]].data,
                                    wcs_,
                                    uncertainty,
                                    DN_unit,
                                    single_file_meta,
                                    window_extra_coords,
                                    mask=data_mask))
        hdulist.close()
    # Construct dictionary of IRISSpectrogramCubeSequences for spectral windows
    data = dict([(window_name,
                  IRISSpectrogramCubeSequence(data_dict[window_name],
                                              window_metas[window_name],
                                              common_axis=0))
                 for window_name in spectral_windows_req])
    # Initialize an IRISSpectrograph object.
    return IRISSpectrograph(data, meta=top_meta)
    'NAXIS1': 4,
    'CTYPE2': 'HPLT-TAN',
    'CUNIT2': 'deg',
    'CDELT2': 0.5,
    'CRPIX2': 2,
    'CRVAL2': 0.5,
    'NAXIS2': 3,
    'CTYPE3': 'HPLN-TAN',
    'CUNIT3': 'deg',
    'CDELT3': 0.4,
    'CRPIX3': 2,
    'CRVAL3': 1,
    'NAXIS3': 2,
}

wt = WCS(header=ht, naxis=3)
wm = WCS(header=hm, naxis=3)

cube1 = NDCube(data,
               wt,
               missing_axes=[False, False, False, True],
               extra_coords=[
                   ('pix', 0, u.Quantity(range(data.shape[0]), unit=u.pix)),
                   ('distance', None, u.Quantity(0, unit=u.cm)),
                   ('time', None, datetime.datetime(2000, 1, 1, 0, 0))
               ])

cube2 = NDCube(data,
               wm,
               extra_coords=[
                   ('pix', 0,
Example #5
0
    'CRVAL1': 10,
    'NAXIS1': 3,
    'CTYPE2': 'HPLT-TAN',
    'CUNIT2': 'deg',
    'CDELT2': 0.5,
    'CRPIX2': 2,
    'CRVAL2': 0.5,
    'NAXIS2': 2,
    'CTYPE3': 'HPLN-TAN',
    'CUNIT3': 'deg',
    'CDELT3': 0.4,
    'CRPIX3': 2,
    'CRVAL3': 1,
    'NAXIS3': 2,
}
WCS0 = WCS(header=H0, naxis=3)

H_NO_COORDS = {
    'CTYPE1': 'PIX     ',
    'CUNIT1': '',
    'CDELT1': 1,
    'CRPIX1': 0,
    'CRVAL1': 0,
    'NAXIS1': 3,
    'CTYPE2': 'PIX     ',
    'CUNIT2': '',
    'CDELT2': 1,
    'CRPIX2': 0,
    'CRVAL2': 0,
    'NAXIS2': 3,
    'CTYPE3': 'PIX     ',
Example #6
0
import pytest
import sunpy.map
import numpy as np
import astropy.units as u

from ndcube import NDCube, NDCubeOrdered
from ndcube.utils.wcs import WCS, _wcs_slicer
from ndcube.tests import helpers

# sample data for tests
# TODO: use a fixture reading from a test file. file TBD.
ht = {'CTYPE3': 'HPLT-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.5, 'CRPIX3': 0, 'CRVAL3': 0, 'NAXIS3': 2,
      'CTYPE2': 'WAVE    ', 'CUNIT2': 'Angstrom', 'CDELT2': 0.2, 'CRPIX2': 0, 'CRVAL2': 0,
      'NAXIS2': 3,
      'CTYPE1': 'TIME    ', 'CUNIT1': 'min', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4}
wt = WCS(header=ht, naxis=3)

data = np.array([[[1, 2, 3, 4], [2, 4, 5, 3], [0, -1, 2, 3]],
                 [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]])

hm = {'CTYPE1': 'WAVE    ', 'CUNIT1': 'Angstrom', 'CDELT1': 0.2, 'CRPIX1': 0, 'CRVAL1': 10,
      'NAXIS1': 4,
      'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'deg', 'CDELT2': 0.5, 'CRPIX2': 2, 'CRVAL2': 0.5,
      'NAXIS2': 3,
      'CTYPE3': 'HPLN-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.4, 'CRPIX3': 2, 'CRVAL3': 1, 'NAXIS3': 2}
wm = WCS(header=hm, naxis=3)

h_disordered = {
    'CTYPE1': 'TIME    ', 'CUNIT1': 'min', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 2,
    'CTYPE2': 'WAVE    ', 'CUNIT2': 'Angstrom', 'CDELT2': 0.2, 'CRPIX2': 0, 'CRVAL2': 10,
    'NAXIS2': 4,
    'NAXIS3': 2,
    'CTYPE2': 'WAVE    ',
    'CUNIT2': 'Angstrom',
    'CDELT2': 0.2,
    'CRPIX2': 0,
    'CRVAL2': 0,
    'NAXIS2': 3,
    'CTYPE1': 'TIME    ',
    'CUNIT1': 'min',
    'CDELT1': 0.4,
    'CRPIX1': 0,
    'CRVAL1': 0,
    'NAXIS1': 4
}

wt = WCS(header=ht, naxis=3)

cube1 = NDCube(data,
               wt,
               missing_axis=[False, False, False, True],
               extra_coords=[
                   ('pix', 0, u.Quantity(range(data.shape[0]), unit=u.pix)),
                   ('hi', 1, u.Quantity(range(data.shape[1]), unit=u.s)),
                   ('distance', None, u.Quantity(0, unit=u.cm)),
                   ('time', None, datetime.datetime(2000, 1, 1, 0, 0))
               ])

cube1_with_unit = NDCube(
    data,
    wt,
    missing_axis=[False, False, False, True],
Example #8
0
import pytest
import numpy as np
import astropy.units as u

from ndcube import NDCube, NDCubeOrdered
from ndcube.utils.wcs import WCS, _wcs_slicer
from ndcube.tests import helpers
from ndcube.ndcube_sequence import NDCubeSequence

# sample data for tests
# TODO: use a fixture reading from a test file. file TBD.
ht = {'CTYPE3': 'HPLT-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.5, 'CRPIX3': 0, 'CRVAL3': 0, 'NAXIS3': 2,
      'CTYPE2': 'WAVE    ', 'CUNIT2': 'Angstrom', 'CDELT2': 0.2, 'CRPIX2': 0, 'CRVAL2': 0,
      'NAXIS2': 3,
      'CTYPE1': 'TIME    ', 'CUNIT1': 'min', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4}
wt = WCS(header=ht, naxis=3)

data = np.array([[[1, 2, 3, 4], [2, 4, 5, 3], [0, -1, 2, 3]],
                 [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]])

hm = {'CTYPE1': 'WAVE    ', 'CUNIT1': 'Angstrom', 'CDELT1': 0.2, 'CRPIX1': 0, 'CRVAL1': 10,
      'NAXIS1': 4,
      'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'deg', 'CDELT2': 0.5, 'CRPIX2': 2, 'CRVAL2': 0.5,
      'NAXIS2': 3,
      'CTYPE3': 'HPLN-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.4, 'CRPIX3': 2, 'CRVAL3': 1, 'NAXIS3': 2}
wm = WCS(header=hm, naxis=3)

h_disordered = {
    'CTYPE1': 'TIME    ', 'CUNIT1': 'min', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 2,
    'CTYPE2': 'WAVE    ', 'CUNIT2': 'Angstrom', 'CDELT2': 0.2, 'CRPIX2': 0, 'CRVAL2': 10,
    'NAXIS2': 4,
Example #9
0
import pytest
from ndcube.tests.helpers import assert_cubesequences_equal
from ndcube.utils.wcs import WCS

import astropy.units as u
from astropy.time import Time, TimeDelta

from sunraster import RasterSequence, SpectrogramCube, SpectrogramSequence

# Define an sample wcs objects.
H0 = {
    'CTYPE1': 'WAVE    ', 'CUNIT1': 'Angstrom', 'CDELT1': 0.2, 'CRPIX1': 0, 'CRVAL1': 10,
    'NAXIS1': 3,
    'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'deg', 'CDELT2': 0.5, 'CRPIX2': 2, 'CRVAL2': 0.5, 'NAXIS2': 2,
    'CTYPE3': 'HPLN-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.4, 'CRPIX3': 2, 'CRVAL3': 1, 'NAXIS3': 2}
WCS0 = WCS(header=H0, naxis=3)

h2 = {
    'CTYPE1': 'HPLN-TAN',
    'CUNIT1': 'deg',
    'CDELT1': 0.2,
    'CRPIX1': 0,
    'CRVAL1': 10,
    'NAXIS1': 3,
    'CTYPE2': 'HPLT-TAN',
    'CUNIT2': 'deg',
    'CDELT2': 0.5,
    'CRPIX2': 2,
    'CRVAL2': 0.5,
    'NAXIS2': 2,
    'CTYPE3': 'WAVE    ',
Example #10
0
    from sunpy.visualization.animator import ImageAnimatorWCS, LineAnimator
except ImportError:
    from sunpy.visualization.imageanimator import ImageAnimatorWCS, LineAnimator

from ndcube import NDCube
from ndcube.utils.wcs import WCS
from ndcube.mixins import plotting


# sample data for tests
# TODO: use a fixture reading from a test file. file TBD.
ht = {'CTYPE3': 'HPLT-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.5, 'CRPIX3': 0, 'CRVAL3': 0, 'NAXIS3': 2,
      'CTYPE2': 'WAVE    ', 'CUNIT2': 'Angstrom', 'CDELT2': 0.2, 'CRPIX2': 0, 'CRVAL2': 0,
      'NAXIS2': 3,
      'CTYPE1': 'TIME    ', 'CUNIT1': 'min', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4}
wt = WCS(header=ht, naxis=3)

hm = {'CTYPE1': 'WAVE    ', 'CUNIT1': 'Angstrom', 'CDELT1': 0.2, 'CRPIX1': 0, 'CRVAL1': 10,
      'NAXIS1': 4,
      'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'deg', 'CDELT2': 0.5, 'CRPIX2': 2, 'CRVAL2': 0.5,
      'NAXIS2': 3,
      'CTYPE3': 'HPLN-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.4, 'CRPIX3': 2, 'CRVAL3': 1, 'NAXIS3': 2}
wm = WCS(header=hm, naxis=3)

spatial = {
           'CTYPE1': 'HPLT-TAN', 'CUNIT1': 'deg', 'CDELT1': 0.5, 'CRPIX1': 2, 'CRVAL1': 0.5,
           'NAXIS1': 3,
           'CTYPE2': 'HPLN-TAN', 'CUNIT2': 'deg', 'CDELT2': 0.4, 'CRPIX2': 2, 'CRVAL2': 1,
           'NAXIS2': 2
}
spatial = WCS(header=spatial, naxis=2)