def loadTTreeTestChannel(self): """ Load the T-tree morphology in memory with h-current 6--5--4--7--8 | | 1 """ v_eq = -75. self.dt = 0.025 self.tmax = 100. # for frequency derivation self.ft = ke.FourrierTools(np.arange(0., self.tmax, self.dt)) # load the morphology test_chan = channelcollection.TestChannel2() fname = os.path.join(MORPHOLOGIES_PATH_PREFIX, 'Tsovtree.swc') self.greenstree = GreensTree(fname, types=[1, 3, 4]) self.greenstree.addCurrent(test_chan, 50., -23.) self.greenstree.fitLeakCurrent(v_eq, 10.) self.greenstree.setCompTree() self.greenstree.setImpedance(self.ft.s) # copy greenstree parameters into NEURON simulation tree self.neurontree = NeuronSimTree(dt=self.dt, t_calibrate=100., v_init=v_eq, factor_lambda=25.) self.greenstree.__copy__(self.neurontree) self.neurontree.treetype = 'computational'
def __init__(self): channel_names = ['L', 'K_ir', 'K_m35'] # reduced trees full_tree, red_tree, self.full_locs, self.red_locs = data.reduceMorphology( ) sim_tree = red_tree.__copy__(new_tree=NeuronSimTree()) # measured data self.v_dat = data.DataContainer(with_zd=True) # get file name file_name = utils.getFileName(channel_names, True, suffix='_predef') print(file_name) # load hall of fame with open(file_name, 'rb') as file: hall_of_fame = pickle.load(file) # get the original simtree with the potassium params self.model_evaluator = optimizer.ModelEvaluator( sim_tree, self.v_dat, self.red_locs[0], self.red_locs[1], channel_names=channel_names, mode='evaluate') self.model_evaluator.setParameterValues(hall_of_fame[0]) self._createHcnTees() self._createGreensTrees()
def optimizeModel(channel_names=None, zd=False, suffix=''): """ Optimizes the morphology equipped with channels in `channel_names` to recordings with or without ZD Parameters ---------- channel_names: list of str Choose channel names from from {'L', 'K_m', 'K_m35', 'K_ir', 'h_HAY', 'h_u'} zd: bool True for data with ZD, false for data without ZD """ global MAX_ITER, N_OFFSPRING if channel_names is None: channel_names = ['L', 'K_ir', 'K_m35', 'h_u'] file_name = utils.getFileName(channel_names, zd, suffix=suffix) full_tree, red_tree, full_locs, red_locs = data.reduceMorphology() sim_tree = red_tree.__copy__(new_tree=NeuronSimTree()) # measured data v_dat = data.DataContainer(with_zd=zd) model_evaluator = ModelEvaluator(sim_tree, v_dat, red_locs[0], red_locs[1], channel_names=channel_names) final_pop, hall_of_fame, logs, hist = optimize(model_evaluator) # save hall of fame file = open(file_name, 'wb') pickle.dump(hall_of_fame, file) file.close()
def loadTTreeActive(self): """ Load the T-tree morphology in memory with h-current 6--5--4--7--8 | | 1 """ v_eq = -75. self.dt = 0.1 self.tmax = 100. # for frequency derivation self.ft = ke.FourrierTools(np.arange(0., self.tmax, self.dt)) # load the morphology print('>>> loading T-tree <<<') h_chan = channelcollection.h() fname = 'test_morphologies/Tsovtree.swc' self.greenstree = GreensTree(fname, types=[1, 3, 4]) self.greenstree.addCurrent(h_chan, 50., -43.) self.greenstree.fitLeakCurrent(v_eq, 10.) self.greenstree.setCompTree() self.greenstree.setImpedance(self.ft.s) # copy greenstree parameters into NEURON simulation tree self.neurontree = NeuronSimTree(dt=self.dt, t_calibrate=10., v_init=v_eq, factor_lambda=25.) self.greenstree.__copy__(self.neurontree) self.neurontree.treetype = 'computational'
def createPointNeurons(self, v_eq=-75.): self.v_eq = v_eq self.dt = .025 gh, eh = 50., -43. h_chan = channelcollection.h() self.greens_tree = GreensTree( file_n=os.path.join(MORPHOLOGIES_PATH_PREFIX, 'ball.swc')) self.greens_tree.setPhysiology(1., 100. / 1e6) self.greens_tree.addCurrent(h_chan, gh, eh) self.greens_tree.fitLeakCurrent(v_eq, 10.) self.greens_tree.setEEq(v_eq) self.greens_tree_pas = self.greens_tree.__copy__(new_tree=GreensTree()) self.greens_tree_pas.asPassiveMembrane() self.sim_tree = self.greens_tree.__copy__(new_tree=NeuronSimTree()) # set the impedances self.greens_tree_pas.setCompTree() self.freqs = np.array([0.]) self.greens_tree_pas.setImpedance(self.freqs) # create sov tree self.sov_tree = self.greens_tree_pas.__copy__(new_tree=SOVTree()) self.sov_tree.calcSOVEquations(maxspace_freq=50.) z_inp = self.greens_tree_pas.calcZF((1, .5), (1, .5))[0] alphas, gammas = self.sov_tree.getSOVMatrices(locarg=[(1., .5)]) # create NET node_0 = NETNode(0, [0], [0], z_kernel=(alphas, gammas[:, 0]**2)) net_py = NET() net_py.setRoot(node_0) # check if correct assert np.abs(gammas[0, 0]**2 / np.abs(alphas[0]) - z_inp) < 1e-10 assert np.abs(node_0.z_bar - z_inp) < 1e-10 # to initialize neuron tree self.sim_tree.initModel(dt=self.dt) # add ion channel to NET simulator a_soma = 4. * np.pi * (self.sim_tree[1].R * 1e-4)**2 self.cnet = netsim.NETSim(net_py, v_eq=self.v_eq) hchan = channelcollection.h() self.cnet.addChannel(hchan, 0, gh * a_soma, eh) # add the synapse # to neuron tree self.sim_tree.addDoubleExpSynapse((1, .5), .2, 3., 0.) self.sim_tree.setSpikeTrain(0, 0.001, [5.]) # to net sim self.cnet.addSynapse(0, { 'tau_r': .2, 'tau_d': 3., 'e_r': 0. }, g_max=0.001) self.cnet.setSpikeTimes(0, [5. + self.dt])
def loadTTreeTestChannelSoma(self): """ Load the T-tree morphology in memory with h-current 6--5--4--7--8 | | 1 """ v_eq = -75. self.dt = 0.025 self.tmax = 100. # for frequency derivation self.ft = ke.FourrierTools(np.arange(0., self.tmax, self.dt)) # load the morphology print('>>> loading T-tree <<<') test_chan = channelcollection.TestChannel2() fname = 'test_morphologies/Tsovtree.swc' self.greenstree = GreensTree(fname, types=[1, 3, 4]) self.greenstree.addCurrent(test_chan, 50., 23., node_arg=[self.greenstree[1]]) self.greenstree.fitLeakCurrent(v_eq, 10.) # for node in self.greenstree: # print node.getGTot(channel_storage=self.greenstree.channel_storage) # print node.currents self.greenstree.setCompTree() self.greenstree.setImpedance(self.ft.s) # copy greenstree parameters into NEURON simulation tree self.neurontree = NeuronSimTree(dt=self.dt, t_calibrate=100., v_init=v_eq, factor_lambda=25.) self.greenstree.__copy__(self.neurontree) self.neurontree.treetype = 'computational'
def runCalciumCoinc(recompute_ctree=False, recompute_biophys=False, axdict=None, pshow=True): global D2S_CASPIKE, D2S_APIC global CA_LOC lss_ = ['-', '-.', '--'] css_ = [colours[3], colours[0], colours[1]] lws_ = [.8, 1.2, 1.6] # create the full model phys_tree = getL5Pyramid() sim_tree = phys_tree.__copy__(new_tree=NeuronSimTree()) # compartmentfitter object cfit = CompartmentFitter(phys_tree, name='bac_firing', path='data/') # single branch initiation zone branch = sim_tree.pathToRoot(sim_tree[236])[::-1] locs_sb = sim_tree.distributeLocsOnNodes(D2S_CASPIKE, node_arg=branch, name='single branch') # abpical trunk locations apic = sim_tree.pathToRoot(sim_tree[221])[::-1] locs_apic = sim_tree.distributeLocsOnNodes(D2S_APIC, node_arg=apic, name='apic connection') # store set of locations fit_locs = [(1, .5)] + locs_apic + locs_sb sim_tree.storeLocs(fit_locs, name='ca coinc') # PSP input location index ca_ind = sim_tree.getNearestLocinds([CA_LOC], name='ca coinc')[0] # obtain the simplified tree ctree, clocs = getCTree(cfit, fit_locs, 'data/ctree_bac_firing', recompute_biophys=recompute_biophys, recompute_ctree=recompute_ctree) # print(ctree) print('--- ctree nodes currents') print('\n'.join([str(n.currents) for n in ctree])) reslist, creslist_sb, creslist_sb_ = [], [], [] locindslist_sb, locindslist_apic_sb = [], [] if axdict is None: pl.figure('inp') axes_input = [pl.subplot(131), pl.subplot(132), pl.subplot(133)] pl.figure('V trace') axes_trace = [pl.subplot(131), pl.subplot(132), pl.subplot(133)] pl.figure('morph') axes_morph = [pl.subplot(121), pl.subplot(122)] else: axes_input = axdict['inp'] axes_trace = axdict['trace'] axes_morph = axdict['morph'] pshow = False for jj, stim in enumerate(['current', 'psp', 'coinc']): print('--- sim full ---') rec_locs = sim_tree.getLocs('ca coinc') # runn the simulation res = runCaCoinc(sim_tree, rec_locs, ca_ind, 0, stim_type=stim, rec_kwargs=dict(record_from_syns=True, record_from_iclamps=True)) print('---- sim reduced ----') rec_locs = clocs # run the simulation of the reduced tree csim_tree = createReducedNeuronModel(ctree) cres = runCaCoinc(csim_tree, rec_locs, ca_ind, 0, stim_type=stim, rec_kwargs=dict(record_from_syns=True, record_from_iclamps=True)) id_offset = 1. vd_offset = 7.2 vlim = (-80., 20.) ilim = (-.1, 2.2) # input current ax = axes_input[jj] ax.plot(res['t'], -res['i_clamp'][0], c='r', lw=lwidth) ax.plot(res['t'], res['i_syn'][0] + id_offset, c='b', lw=lwidth) ax.set_yticks([0., id_offset]) if jj == 1 or jj == 2: drawScaleBars(ax, ylabel=' nA', b_offset=0) else: drawScaleBars(ax) if jj == 2: ax.set_yticklabels([r'Soma', r'Dend']) ax.set_ylim(ilim) # somatic trace ax = axes_trace[jj] ax.set_xticks([0., 50.]) ax.plot(res['t'], res['v_m'][0], c='DarkGrey', lw=lwidth) ax.plot(cres['t'], cres['v_m'][0], c=cll[0], lw=1.6 * lwidth, ls='--') # dendritic trace ax.plot(res['t'], res['v_m'][ca_ind] + vd_offset, c='DarkGrey', lw=lwidth) ax.plot(cres['t'], cres['v_m'][ca_ind] + vd_offset, c=cll[1], lw=1.6 * lwidth, ls='--') ax.set_yticks([cres['v_m'][0][0], cres['v_m'][ca_ind][0] + vd_offset]) if jj == 1 or jj == 2: drawScaleBars(ax, xlabel=' ms', ylabel=' mV', b_offset=15) # drawScaleBars(ax, xlabel=' ms', b_offset=25) else: drawScaleBars(ax) if jj == 2: ax.set_yticklabels([r'Soma', r'Dend']) ax.set_ylim(vlim) print('iv') plocs = sim_tree.getLocs('ca coinc') markers = [{'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize/1.1}] + \ [{'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize/1.1} for _ in locs_apic + locs_sb] markers[ca_ind]['marker'] = 'v' plotargs = {'lw': lwidth / 1.3, 'c': 'DarkGrey'} sim_tree.plot2DMorphology(axes_morph[0], use_radius=False, plotargs=plotargs, marklocs=plocs, locargs=markers, lims_margin=0.01) # compartment tree dendrogram labelargs = { 0: { 'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize * 1.2 } } labelargs.update({ ii: { 'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize * 1.2 } for ii in range(1, len(plocs)) }) ctree.plotDendrogram(axes_morph[1], plotargs={ 'c': 'k', 'lw': lwidth }, labelargs=labelargs) pl.show()
def basalAPBackProp(recompute_ctree=False, recompute_biophys=False, axes=None, pshow=True): global STIM_PARAMS, D2S_BASAL, SLOCS global CMAP_MORPH rc, rb = recompute_ctree, recompute_biophys if axes is None: pl.figure(figsize=(7,5)) ax1, ax2, ax4, ax5 = pl.subplot(221), pl.subplot(223), pl.subplot(222), pl.subplot(224) divider = make_axes_locatable(ax1) ax3 = divider.append_axes("top", "30%", pad="10%") ax4, ax5 = myAx(ax4), myAx(ax5) pl.figure(figsize=(5,5)) gs = GridSpec(2,2) ax_morph, ax_red1, ax_red2 = pl.subplot(gs[:,0]), pl.subplot(gs[1,0]), pl.subplot(gs[1,1]) else: ax1, ax2, ax3 = axes['trace'] ax4, ax5 = axes['amp-delay'] ax_morph, ax_red1, ax_red2 = axes['morph'] pshow = False # create the full model phys_tree = getL23PyramidNaK() sim_tree = phys_tree.__copy__(new_tree=NeuronSimTree()) # distribute locations to measure backAPs on branches leafs_basal = [node for node in sim_tree.leafs if node.swc_type == 3] branches = [sim_tree.pathToRoot(leaf)[::-1] for leaf in leafs_basal] locslist = [sim_tree.distributeLocsOnNodes(D2S_BASAL, node_arg=branch) for branch in branches] branchlist = [b for ii, b in enumerate(branches) if len(locslist[ii]) == 3] locs = [locs for locs in locslist if len(locs) == 3][1] # do back prop sims amp_diffs_3loc, delay_diffs_3loc = np.zeros(3), np.zeros(3) amp_diffs_1loc, delay_diffs_1loc = np.zeros(3), np.zeros(3) amp_diffs_biop, delay_diffs_biop = np.zeros(3), np.zeros(3) # compartmentfitter object cfit = CompartmentFitter(phys_tree, name='basal_bAP', path='data/') # create reduced tree ctree, clocs = getCTree(cfit, [SLOCS[0]] + locs, 'data/ctree_basal_bAP_3loc', recompute_ctree=rc, recompute_biophys=rb) csimtree = createReducedNeuronModel(ctree) print(ctree) # run the simulation of he full tree res = runSim(sim_tree, locs, SLOCS[0], stim_params=STIM_PARAMS) calcAmpDelayWidth(res) amp_diffs_biop[:] = res['amp'][1:] delay_diffs_biop[:] = res['delay'][1:] # run the simulation of the reduced tree cres = runSim(csimtree, clocs[1:], clocs[0], stim_params=STIM_PARAMS) calcAmpDelayWidth(cres) amp_diffs_3loc[:] = cres['amp'][1:] delay_diffs_3loc[:] = cres['delay'][1:] # reduced models with one single dendritic site creslist = [] for jj, loc in enumerate(locs): # create reduced tree with all 1 single dendritic site locs ctree, clocs = getCTree(cfit, [SLOCS[0]] + [loc], 'data/ctree_basal_bAP_1loc%d'%jj, recompute_ctree=rc, recompute_biophys=False) csimtree = createReducedNeuronModel(ctree) print(ctree) # run the simulation of the reduced tree cres_ss = runSim(csimtree, [clocs[1]], clocs[0], stim_params=STIM_PARAMS) calcAmpDelayWidth(cres_ss) creslist.append(cres_ss) amp_diffs_1loc[jj] = cres_ss['amp'][1] delay_diffs_1loc[jj] = cres_ss['delay'][1] ylim = (-90., 60.) x_range = np.array([-3.,14]) xlim = (0., 12.) tp_full = res['t'][np.argmax(res['v_m'][0])] tp_3comp = cres['t'][np.argmax(cres['v_m'][0])] tp_1comp = creslist[2]['t'][np.argmax(creslist[2]['v_m'][0])] tlim_full = tp_full + x_range tlim_3comp = tp_3comp + x_range tlim_1comp = tp_1comp + x_range i0_full, i1_full = np.round(tlim_full / DT).astype(int) i0_3comp, i1_3comp = np.round(tlim_3comp / DT).astype(int) i0_1comp, i1_1comp = np.round(tlim_1comp / DT).astype(int) ax1.set_ylabel(r'soma') ax1.plot(res['t'][i0_full:i1_full] - tlim_full[0], res['v_m'][0][i0_full:i1_full], lw=lwidth, c='DarkGrey', label=r'full') ax1.plot(cres['t'][i0_3comp:i1_3comp] - tlim_3comp[0], cres['v_m'][0][i0_3comp:i1_3comp], ls='--', lw=1.6*lwidth, c=colours[0], label=r'3 comp') ax1.plot(creslist[2]['t'][i0_1comp:i1_1comp] - tlim_1comp[0], creslist[2]['v_m'][0][i0_1comp:i1_1comp], ls='-.', lw=1.6*lwidth, c=colours[1], label=r'1 comp') ax1.set_ylim(ylim) # ax1.set_xlim(xlim) drawScaleBars(ax1, b_offset=15) myLegend(ax1, add_frame=False, loc='center left', bbox_to_anchor=[0.35, 0.55], fontsize=ticksize, labelspacing=.8, handlelength=2., handletextpad=.2) ax2.set_ylabel(r'dend' + '\n($d_{soma} = 150$ $\mu$m)') ax2.plot(res['t'][i0_full:i1_full] - tlim_full[0], res['v_m'][3][i0_full:i1_full], lw=lwidth, c='DarkGrey', label=r'full') ax2.plot(cres['t'][i0_3comp:i1_3comp] - tlim_3comp[0], cres['v_m'][3][i0_3comp:i1_3comp], ls='--', lw=1.6*lwidth, c=colours[0], label=r'3 comp') ax2.plot(creslist[2]['t'][i0_1comp:i1_1comp] - tlim_1comp[0], creslist[2]['v_m'][1][i0_1comp:i1_1comp], ls='-.', lw=1.6*lwidth, c=colours[1], label=r'1 comp') imax = np.argmax(res['v_m'][3]) xp = res['t'][imax] ax2.annotate(r'$v_{amp}$', xy=(xlim[0], np.mean(ylim)), xytext=(xlim[0], np.mean(ylim)), fontsize=ticksize, ha='center', va='center', rotation=90.) ax2.annotate(r'$t_{delay}$', xy=(xp, ylim[1]), xytext=(xp, ylim[1]), fontsize=ticksize, ha='center', va='center', rotation=0.) ax2.set_ylim(ylim) ax2.set_xlim(xlim) drawScaleBars(ax2, xlabel=' ms', ylabel=' mV', b_offset=15) # myLegend(ax2, add_frame=False, ncol=2, fontsize=ticksize, # loc='upper center', bbox_to_anchor=[.5, -.1], # labelspacing=.6, handlelength=2., handletextpad=.2, columnspacing=.5) ax3.plot(res['t'][i0_full:i1_full] - tlim_full[0], -res['i_clamp'][0][i0_full:i1_full], lw=lwidth, c='r') ax3.set_yticks([0.,3.]) drawScaleBars(ax3, ylabel=' nA', b_offset=0) # ax3.set_xlim(xlim) # color the branches cnodes = [b for branch in branches for b in branch] if cnodes is None: plotargs = {'lw': lwidth/1.3, 'c': 'DarkGrey'} cs = {node.index: 0 for node in sim_tree} else: plotargs = {'lw': lwidth/1.3} cinds = [n.index for n in cnodes] cs = {node.index: 1 if node.index in cinds else 0 for node in sim_tree} # mark example locations plocs = [SLOCS[0]] + locs markers = [{'marker': 's', 'c': cfl[0], 'mec': 'k', 'ms': markersize}] + \ [{'marker': 's', 'c': cfl[1], 'mec': 'k', 'ms': markersize} for _ in plocs[1:]] # plot morphology sim_tree.plot2DMorphology(ax_morph, use_radius=False, plotargs=plotargs, cs=cs, cmap=CMAP_MORPH, marklocs=plocs, locargs=markers, lims_margin=0.01) # plot compartment tree schematic ctree_3l = cfit.setCTree([SLOCS[0]] + locs) ctree_3l = cfit.ctree ctree_1l = cfit.setCTree([SLOCS[0]] + locs[0:1]) ctree_1l = cfit.ctree labelargs = {0: {'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize*1.2}} labelargs.update({ii: {'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize*1.2} for ii in range(1,len(plocs))}) ctree_3l.plotDendrogram(ax_red1, plotargs={'c':'k', 'lw': lwidth}, labelargs=labelargs) labelargs = {0: {'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize*1.2}, 1: {'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize*1.2}} ctree_1l.plotDendrogram(ax_red2, plotargs={'c':'k', 'lw': lwidth}, labelargs=labelargs) ax_red1.set_xticks([]); ax_red1.set_yticks([]) ax_red1.set_xlabel(r'$\Delta x = 50$ $\mu$m', fontsize=ticksize,rotation=60) ax_red2.set_xticks([]); ax_red2.set_yticks([]) ax_red2.set_xlabel(r'$\Delta x = 150$ $\mu$m', fontsize=ticksize,rotation=60) xb = np.arange(3) bwidth = 1./4. xtls = [r'50', r'100', r'150'] ax4, ax5 = myAx(ax4), myAx(ax5) ax4.bar(xb-bwidth, amp_diffs_biop, width=bwidth, align='center', color='DarkGrey', edgecolor='k', label=r'full') ax4.bar(xb, amp_diffs_3loc, width=bwidth, align='center', color=colours[0], edgecolor='k', label=r'4 comp') ax4.bar((xb+bwidth)[-1:], amp_diffs_1loc[-1:], width=bwidth, align='center', color=colours[1], edgecolor='k', label=r'2 comp') ax4.set_ylabel(r'$v_{amp}$ (mV)') ax4.set_xticks(xb) ax4.set_xticklabels([]) ax4.set_ylim(50.,110.) ax4.set_yticks([50., 80.]) myLegend(ax4, add_frame=False, loc='lower center', bbox_to_anchor=[.5, 1.05], fontsize=ticksize, labelspacing=.1, handlelength=1., handletextpad=.2, columnspacing=.5) ax5.bar(xb-bwidth, delay_diffs_biop, width=bwidth, align='center', color='DarkGrey', edgecolor='k', label=r'full') ax5.bar(xb, delay_diffs_3loc, width=bwidth, align='center', color=colours[0], edgecolor='k', label=r'4 comp') ax5.bar((xb+bwidth)[-1:], delay_diffs_1loc[-1:], width=bwidth, align='center', color=colours[1], edgecolor='k', label=r'2 comp') ax5.set_ylabel(r'$t_{delay}$ (ms)') ax5.set_xticks(xb) ax5.set_xticklabels(xtls) ax5.set_xlabel(r'$d_{soma}$ ($\mu$m)') ax5.set_yticks([0., 0.5]) if pshow: pl.show()
def plotTrace(channel_names, zd, axes=None, plot_xlabel=True, plot_ylabel=True, plot_legend=True, units='uS/cm2', suffix='_predef'): ts = np.array([data.T0, data.T1, data.T2, data.T3]) - 100. pcolor = 'Orange' if zd else 'Blue' if units == 'uS/cm2': unit_conv = 1 elif units == 'pS/um2': unit_conv = 0.01 else: print('Unit type not defined, reverting to uS/cm2') unit_conv = 1 # reduced trees full_tree, red_tree, full_locs, red_locs = data.reduceMorphology() sim_tree = red_tree.__copy__(new_tree=NeuronSimTree()) # measured data v_dat = data.DataContainer(with_zd=zd) # get file name file_name = utils.getFileName(channel_names, zd, suffix=suffix) # model model_evaluator = optimizer.ModelEvaluator(sim_tree, v_dat, red_locs[0], red_locs[1], channel_names=channel_names) # load hall of fame file = open(file_name, 'rb') hall_of_fame = pickle.load(file) file.close() # run the best fit model model_evaluator.setParameterValues(hall_of_fame[0]) print("\n--> running model for parameter values: \n%s" % model_evaluator.toStrParameterValues()) res = model_evaluator.runSim() if axes is None: pl.figure('v opt', figsize=(16, 4)) axes = [ pl.subplot(161), pl.subplot(162), pl.subplot(163), pl.subplot(164), pl.subplot(165), pl.subplot(166) ] pshow = True else: pshow = False i0s = [int(tt / data.DT) for tt in ts] i1s = [int((tt + 1000. - data.DT) / data.DT) for tt in ts] t_plot = np.arange(0., 1000. - 3 * data.DT / 2., data.DT) pchanstr = r'' + ', '.join([PSTRINGS[c_name] for c_name in channel_names]) ax = axes[0] # ax.set_title(pchanstr) ax.axison = False ax.text(0., 0., pchanstr, horizontalalignment='center', verticalalignment='center', rotation=45., fontsize=labelsize) ax.set_xlim((0., 1.)) ax.set_ylim((-1., 1.)) for ii in range(4): ax = noFrameAx(axes[ii + 1]) i0, i1 = i0s[ii], i1s[ii] # plot traces ax.plot(t_plot, v_dat.v_s[i0:i1], c='k', lw=lwidth, label=r'$Exp_{soma}$') ax.plot(t_plot, v_dat.v_d[i0:i1], c=pcolor, lw=lwidth, label=r'$Exp_{dend}$') ax.plot(t_plot, res['v_m'][0][i0:i1], c='k', lw=2 * lwidth, alpha=.4, label=r'$Sim_{soma}$') ax.plot(t_plot, res['v_m'][1][i0:i1], c=pcolor, lw=2 * lwidth, alpha=.4, label=r'$Sim_{soma}$') if zd: ax.set_ylim((-110., -50.)) else: ax.set_ylim((-95., -50.)) if ii == 0: if not zd: ax.set_yticks([-65., -70.]) ax.set_yticklabels(['-65 mV', '-70 mV']) else: ax.set_yticks([-75., -80.]) ax.set_yticklabels(['-75 mV', '-80 mV']) if ii == 3 and plot_legend: myLegend(ax) # draw x scalebar ypos = ax.get_ylim()[0] xpos = ax.get_xlim()[-1] - 40. sblen = 400. ax.plot([xpos - sblen, xpos], [ypos, ypos], 'k-', lw=2. * lwidth) ax.annotate(r'%.0f ms' % sblen, xy=(xpos - sblen / 2., ypos), xytext=(xpos - sblen / 2., ypos - 4.), size=labelsize, rotation=0, ha='center', va='center') # draw y scalebar ypos = ax.get_ylim()[0] + 5. xpos = ax.get_xlim()[-1] sblen = 10. ax.plot([xpos, xpos], [ypos, ypos + sblen], 'k-', lw=2. * lwidth) ax.annotate(r'%.0f mV' % sblen, xy=(xpos, ypos + sblen / 2.), xytext=(xpos + 100., ypos + sblen / 2.), size=labelsize, rotation=90, ha='center', va='center') ax = myAx(axes[5]) print('>>> parameters') for jj, pvals in enumerate(hall_of_fame): model_evaluator.setParameterValues(pvals) ps = model_evaluator.getParameterValuesAsDict() print(model_evaluator.toStrParameterValues()) d2s = np.linspace(0., 400., int(1e3)) for ii, c_name in enumerate(model_evaluator.channel_names): func = utils.expDistr(ps['d_' + c_name], ps['g0_' + c_name], g_max=model_evaluator.g_max[c_name]) if jj == 0: ax.plot(d2s, func(d2s) * unit_conv, c=PCOLORS[c_name], lw=lwidth, label=PSTRINGS[c_name]) else: ax.plot(d2s, func(d2s) * unit_conv, c=PCOLORS[c_name], lw=3. * lwidth, alpha=.07) if plot_legend: myLegend(ax) if plot_xlabel: ax.set_xlabel(r'Distance ($\mu$m)', fontsize=labelsize) else: ax.set_xticklabels([]) if plot_ylabel: if units == 'pS/um2': ax.set_ylabel(r'Conductance (pS/$\mu$m$^2$)', fontsize=labelsize) else: ax.set_ylabel(r'Conductance ($\mu$S/cm$^2$)', fontsize=labelsize) if zd: ax.set_ylim((0., 2000. * unit_conv)) ax.set_yticks([0., 1000. * unit_conv]) else: ax.set_ylim((0., 6000. * unit_conv)) ax.set_yticks([0., 3000. * unit_conv]) if pshow: pl.tight_layout() pl.show()
def plotErrors(channel_names_list, zd_list, ax=None, qs=[.01, .5, .99], suffix='_predef'): global PSTRINGS full_tree, red_tree, full_locs, red_locs = data.reduceMorphology() sim_tree = red_tree.__copy__(new_tree=NeuronSimTree()) v_qmins, v_meds, v_qmaxs = [], [], [] ticklabels = [] for channel_names, zd in zip(channel_names_list, zd_list): # load hall of fame file_name = utils.getFileName(channel_names, zd, suffix=suffix) file = open(file_name, 'rb') hall_of_fame = pickle.load(file) file.close() # measured data v_dat = data.DataContainer(with_zd=zd) # model model_evaluator = optimizer.ModelEvaluator(sim_tree, v_dat, red_locs[0], red_locs[1], channel_names=channel_names) # compute the errors v_errs = calcError(model_evaluator, hall_of_fame, v_dat) # compute quantiles v_qmin, v_med, v_qmax = np.quantile(v_errs, qs) v_qmins.append(v_qmin) v_meds.append(v_med) v_qmaxs.append(v_qmax) # tick label for this configuration tl = r'' + ', '.join([PSTRINGS[c_name] for c_name in channel_names]) ticklabels.append(tl) v_meds = np.array(v_meds) v_errs = np.abs(np.array([v_qmins, v_qmaxs]) - v_meds[None, :]) inds_h = np.where(np.logical_not(np.array(zd_list)))[0] inds_zd = np.where(np.array(zd_list))[0] n_h = len(inds_h) n_zd = len(inds_zd) ticklabels = [ticklabels[ii] for ii in inds_h] print(v_errs) if ax is None: pl.figure('v errors') ax = pl.gca() pshow = True else: pshow = False if n_h > 0: ax.bar(np.arange(n_h), v_meds[inds_h], width=.3, align='edge', yerr=v_errs[:, inds_h], color='Blue') if n_zd > 0: ax.bar(np.arange(n_zd), v_meds[inds_zd], width=-.3, align='edge', yerr=v_errs[:, inds_zd], color='Orange') ax.set_xticks(np.arange(np.max([n_zd, n_h]))) ax.set_xticklabels(ticklabels, rotation=60., fontsize=labelsize) ax.set_ylabel(r'$V_{error}$ (mV)') if pshow: pl.show()