def main(env_id, embedding_size): env = wrap_deepmind(make_atari(env_id), scale=True) embedding_model = DQN(embedding_size) agent = NECAgent(env, embedding_model) # subprocess.Popen(["tensorboard", "--logdir", "runs"]) configure("runs/pong-run") for t in count(): if t == 0: reward = agent.warmup() else: reward = agent.episode() print("Episode {}\nTotal Reward: {}".format(t, reward)) log_value('score', reward, t)
# trajectory is finished next_state = np.zeros(len(self.cur_state)) done = 1 self.cur_state=next_state return next_state,reward,done,action env=Pseudo_env(df) embedding_model = Embed(len(feature_fields),32) agent = NECAgent(env, embedding_model,batch_size=32,sgd_lr=1e-5) for t in count(): if t < 100: reward = agent.warmup() else: reward = agent.episode() print("Episode {}\nTotal Reward: {}".format(t, reward)) test_df = pd.read_csv('HFpEF data/aim3data_test_set.csv') a = test_df.copy() num = np.size(a,0) patient_num = np.size(pd.unique(a['EMPI'])) from torch import Tensor from torch.autograd import Variable embedding_model.eval() import pickle filename = 'evaluate data/aim3state_test.data'