test_X2_label = np.transpose(np.mat(test_X2_data['label_X2'])) # view1 layers X1 = tf.placeholder(tf.float32, [None, 1024]) X2 = tf.placeholder(tf.float32, [None, 1024]) W11 = tf.Variable(tf.random_uniform([1024, 1], -1, 1)) #L11 = tf.nn.relu(tf.matmul(X1,W11)) model1 = tf.matmul(X1, W11) # view2 layers W12 = tf.Variable(tf.random_uniform([1024, 1], -1, 1)) #L12 = tf.nn.relu(tf.matmul(X2,W12)) model2 = tf.matmul(X2, W12) cost = neg_correlation(model1, model2, 1) + 0.1 * tf.norm( W11, ord=1) + 0.1 * tf.norm(W12, ord=1) + 0.1 * tf.matmul( tf.matmul(tf.transpose(W11), H1), W11) + 0.1 * tf.matmul( tf.matmul(tf.transpose(W12), H2), W12) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) iterations = 0 for epoch in range(n_epochs): index = np.arange(train_X1.shape[0]) np.random.shuffle(index) trX1 = train_X1[index] trX2 = train_X2[index]
# view2 layers W12 = tf.Variable(tf.random_uniform([1024, 2048], -1, 1)) L12 = tf.nn.relu(tf.matmul(X2, W12)) W22 = tf.Variable(tf.random_uniform([2048, 2048], -1, 1)) L22 = tf.nn.relu(tf.matmul(L12, W22)) W32 = tf.Variable(tf.random_uniform([2048, 1024], -1, 1)) L32 = tf.nn.relu(tf.matmul(L22, W32)) W42 = tf.Variable(tf.random_uniform([1024, 1], -1, 1)) model2 = tf.matmul(X2, W42) cost = neg_correlation( model1, model2, 1) + 0.01 * tf.norm(W41, ord=1) + 0.01 * tf.norm(W42, ord=1) #+ 0.01*tf.norm(W11,ord=2) + 0.1*tf.norm(W12,ord=2)+ 0.01*tf.norm(W21,ord=1) + 0.01*tf.norm(W22,ord=1) + 0.01 * tf.norm(W31,ord=1) + 0.01*tf.norm(W32,ord=1) #cost = tf.contrib.metrics.streaming_pearson_correlation(model1,model2) optimizer = tf.train.AdamOptimizer(0.01).minimize(cost) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) iterations = 0 for epoch in range(n_epochs): index = np.arange(train_X1.shape[0]) np.random.shuffle(index) trX1 = train_X1[index] trX2 = train_X2[index]
# view2 layers W12 = tf.Variable(tf.random_uniform([1024, 2048], -1, 1)) L12 = tf.nn.relu(tf.matmul(X2, W12)) W22 = tf.Variable(tf.random_uniform([2048, 2048], -1, 1)) L22 = tf.nn.relu(tf.matmul(L12, W22)) W32 = tf.Variable(tf.random_uniform([2048, 1024], -1, 1)) L32 = tf.nn.relu(tf.matmul(L22, W32)) W42 = tf.Variable(tf.random_uniform([1024, 1], -1, 1)) model2 = tf.matmul(L32, W42) cost = tf.reduce_mean(tf.square(W41 - train_X1_label)) + tf.reduce_mean( tf.square(W42 - train_X2_label)) + neg_correlation(model1, model2, 1) # neg_correlation(model1,model2,1) ++ 0.01*tf.norm(W41,ord=1) + 0.01*tf.norm(W42,ord=1) #+ 0.01*tf.norm(W11,ord=2) + 0.1*tf.norm(W12,ord=2)+ 0.01*tf.norm(W21,ord=1) + 0.01*tf.norm(W22,ord=1) + 0.01 * tf.norm(W31,ord=1) + 0.01*tf.norm(W32,ord=1) #cost = tf.contrib.metrics.streaming_pearson_correlation(model1,model2) optimizer = tf.train.AdamOptimizer(0.01).minimize(cost) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) iterations = 0 for epoch in range(n_epochs): index = np.arange(train_X1.shape[0]) np.random.shuffle(index) trX1 = train_X1[index] trX2 = train_X2[index]
activation=tf.nn.relu, kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=0.01)) h22 = tf.layers.max_pooling2d(h22, [2, 2], [2, 2]) h22 = tf.layers.dropout(h22, 0.7, is_training) h32 = tf.contrib.layers.flatten(h22) h32 = tf.layers.dense( h32, 256, activation=tf.nn.relu, kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=0.01)) h42 = tf.layers.dense( h32, 10, kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=0.01)) # Optimization cost = neg_correlation(h41, h42, 10) optimizer = tf.train.AdamOptimizer(0.001).minimize(cost) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) iterations = 0 for epoch in range(n_epochs): index = np.arange(train_X1.shape[0]) np.random.shuffle(index) trX1 = train_X1[index] trX2 = train_X2[index] for start, end in zip(range(0, train_X1.shape[0], batch_size), range(batch_size, train_X1.shape[0], batch_size)):