def setUp(self): self.SS = np.array([ [ 5.99159801, -2.24342348, 0.26667281, -0.95466199, 3.98931478, -0.10846981], [ 1.86468226, -4.32391908, -7.82738638, -7.45008989, 5.89874777, 0.45820648], [-5.92565398, 2.4862829 , -6.02112389, 6.75455965, 4.65183463, 9.96900579], [ 0.60378883, -3.72189328, -7.63388446, -5.76559403, -0.3119789 , -1.1527258 ], [ 4.56813135, -6.06783828, -6.18341368, 8.06169686, -9.56928844, 9.08114655], [-8.25516614, 6.30663846, 7.2084381 , -7.38280703, -5.96279902, 8.9935982 ]]) self.SS_full = common.ms2ts(self.SS) self.TSS = tensors.SymSymR4(self.SS) self.W = np.array([[-9.36416517, 2.95527444, 8.70983194], [-1.54693052, 8.7905658 , -5.10895168], [-8.52740468, -0.7741642 , 2.89544992]]) self.W = 0.5 * (self.W - self.W.T) self.TW = tensors.Skew(self.W) self.S = np.array([[4.1,2.8,-1.2],[3.1,7.1,0.2],[4,2,3]]) self.S = 0.5*(self.S + self.S.T) self.TS = tensors.Symmetric(self.S) self.WS = np.array([ [-8.3567359 , -5.39728818, -8.00844442, -8.33365112, -0.97903364, -8.23943149], [-6.97125417, 4.34802055, 7.06281056, -1.57511617, 7.83359933, -9.37625432], [-6.0799489 , -6.0309543 , 3.68575895, 8.84296976, 6.55799427, -9.22029379]]) self.WS_full = common.wws2ts(self.WS) self.TWS = tensors.SkewSymR4(self.WS)
def test_douter(self): self.assertEqual(tensors.SkewSymR4(common.ts2wws(np.einsum('ij,kl', self.W, self.S))), tensors.douter(self.TW, self.TS))
def test_scalar_mult(self): self.assertEqual(tensors.SkewSymR4(self.scalar * self.WS1), self.scalar * self.TWS1) self.assertEqual(tensors.SkewSymR4(self.scalar * self.WS2), self.TWS2 * self.scalar) self.assertEqual(tensors.SkewSymR4(self.WS1 / self.scalar), self.TWS1 / self.scalar)
def test_negate(self): self.assertEqual(tensors.SkewSymR4(-self.WS1), -self.TWS1)
def test_add(self): self.assertEqual(tensors.SkewSymR4(self.WS1 + self.WS2), self.TWS2 + self.TWS1) self.assertEqual(tensors.SkewSymR4(self.WS1 - self.WS2), self.TWS1 - self.TWS2)
def setUp(self): self.WS1 = np.array([ [-8.3567359 , -5.39728818, -8.00844442, -8.33365112, -0.97903364, -8.23943149], [-6.97125417, 4.34802055, 7.06281056, -1.57511617, 7.83359933, -9.37625432], [-6.0799489 , -6.0309543 , 3.68575895, 8.84296976, 6.55799427, -9.22029379]]) self.WS1_full = common.wws2ts(self.WS1) self.TWS1 = tensors.SkewSymR4(self.WS1) self.WS2 = np.array([ [-8.80662663, 0.46179936, -5.49454144, 7.91618428, 5.34053953, -6.68997405], [ 4.15874971, -4.59781751, 7.43746813, 8.99981425, -0.97692573, 2.5075246 ], [ 9.53201007, -8.03524224, 0.94329443, -6.44415877, -9.92911741, 3.51742689]]) self.WS2_full = common.wws2ts(self.WS2) self.TWS2 = tensors.SkewSymR4(self.WS2) self.SW = np.array([ [ 5.43434005, -6.55983214, 0.29737664], [-4.77472172, -8.51287287, -3.19380185], [ 4.43407952, -6.02555614, 5.87786914], [ 1.89488869, -5.65383917, 8.83717547], [-7.18030867, 1.56100537, -9.83238641], [-4.52369317, -3.07284914, -7.54966999]]) self.SW_full = common.ws2ts(self.SW) self.TSW = tensors.SymSkewR4(self.SW) self.SS = np.array([ [ 5.99159801, -2.24342348, 0.26667281, -0.95466199, 3.98931478, -0.10846981], [ 1.86468226, -4.32391908, -7.82738638, -7.45008989, 5.89874777, 0.45820648], [-5.92565398, 2.4862829 , -6.02112389, 6.75455965, 4.65183463, 9.96900579], [ 0.60378883, -3.72189328, -7.63388446, -5.76559403, -0.3119789 , -1.1527258 ], [ 4.56813135, -6.06783828, -6.18341368, 8.06169686, -9.56928844, 9.08114655], [-8.25516614, 6.30663846, 7.2084381 , -7.38280703, -5.96279902, 8.9935982 ]]) self.SS_full = common.ms2ts(self.SS) self.TSS = tensors.SymSymR4(self.SS) self.R = np.array([[[[-8.03675620e+00, 2.58575052e+00, 2.44069661e+00], [ 4.75021663e+00, 1.24463394e+00, -8.69751301e-01], [-1.46310894e+00, -1.15053235e+00, -3.75342982e+00]], [[-7.64033956e+00, 4.19956720e+00, -4.87644982e+00], [ 1.06577507e+00, 8.94272637e+00, 6.57264250e-01], [-4.22613258e+00, -5.08830314e+00, 1.57718186e+00]], [[-4.02243082e+00, -4.75463781e+00, -8.88662152e+00], [-1.30383950e+00, -1.98063574e+00, -3.18963544e+00], [-7.52071674e+00, 1.08931933e+00, 2.86988431e+00]]], [[[ 5.28621060e+00, -6.83799668e+00, 8.98005935e+00], [-7.92741122e+00, 5.75699425e-01, 1.66782544e+00], [ 2.60041984e+00, -1.04476986e-02, -6.12424787e+00]], [[-3.73727368e+00, 6.59764771e+00, -1.18045587e+00], [ 4.08567441e+00, 2.66148943e+00, -6.82495588e-01], [-1.64417262e+00, 5.33119298e+00, 8.11045988e-03]], [[-5.90193883e+00, -2.63316107e+00, 5.61381825e+00], [-6.08591194e+00, 8.77285539e+00, -7.15230533e+00], [ 3.15093096e+00, 1.41350149e+00, 1.11702016e+00]]], [[[-9.61472764e-01, -1.91492497e+00, 9.48275324e+00], [ 6.68841134e+00, 3.23412041e+00, -3.41944541e+00], [-9.80203467e+00, 6.58425335e+00, -2.16548636e+00]], [[ 6.63950740e+00, 3.91551441e+00, -8.98229111e+00], [ 9.84606756e+00, -8.16145090e+00, 8.41929062e-01], [-1.93839620e+00, 7.44485127e+00, -2.70832414e+00]], [[ 9.79265531e+00, -1.18212395e+00, -5.39433704e+00], [ 4.87152614e+00, 9.47287450e+00, 5.53838514e+00], [ 9.30443367e+00, 1.27090319e+00, 1.60409739e+00]]]]) self.TR = tensors.RankFour(self.R) self.S = np.array([[4.1,2.8,-1.2],[3.1,7.1,0.2],[4,2,3]]) self.S = 0.5*(self.S + self.S.T) self.TS = tensors.Symmetric(self.S) self.scalar = 5.2 self.G = np.array([[ 9.50640677, 1.79084726, -2.8877036 ], [-1.63159958, 2.52866904, -8.71585042], [ 5.01859685, -8.7324075 , -0.42919134]]) self.TG = tensors.RankTwo(self.G) self.W = np.array([[-9.36416517, 2.95527444, 8.70983194], [-1.54693052, 8.7905658 , -5.10895168], [-8.52740468, -0.7741642 , 2.89544992]]) self.W = 0.5 * (self.W - self.W.T) self.TW = tensors.Skew(self.W)
def diff_skew_symmetric(fn, s0): dfn = lambda s: fn(tensors.Symmetric(usym(s))).data return tensors.SkewSymR4(differentiate(dfn, s0.data))