def load_cifar10(path=".", normalize=True, contrast_normalize=False, whiten=False): cfiar10_dataset = CIFAR10(path=path, normalize=normalize, contrast_normalize=contrast_normalize, whiten=whiten) return cfiar10_dataset.load_data()
def global_contrast_normalize(X, scale=1., min_divisor=1e-8): return CIFAR10.global_contrast_normalize(X, scale=scale, min_divisor=min_divisor)
def zca_whiten(train, test, cache=None): return CIFAR10.zca_whiten(train, test, cache=cache)
def _compute_zca_transform(imgs, filter_bias=0.1): return CIFAR10._compute_zca_transform(imgs, filter_bias=filter_bias)