def test_kernel_cache(transformer_factory): X = ng.make_axis(32) Y = ng.make_axis(32) C = ng.make_axis(16384) axes = ng.make_axes([ X, Y ]) bcast_axes = ng.make_axes([ X, Y, C ]) # Limiting maximum absolute value for tensors elements to 7.9. # See description in function test_exit_condition above is_flex = is_flex_factory(transformer_factory) clip_val = 7.9 if is_flex else 0 x_val = rng.randn_abs_clip(axes, clip_max=clip_val) y_val = rng.randn_abs_clip(bcast_axes, clip_max=clip_val) z_val = rng.randn_abs_clip(bcast_axes, clip_max=clip_val) x = ng.constant(x_val, axes) y = ng.constant(y_val, bcast_axes) z = ng.constant(z_val, bcast_axes) out = ng.add(ng.add(x, y), z) with executor(out) as ex: graph_val = ex() np_val = np.add(np.add(x_val.reshape(32, 32, 1), y_val), z_val) ng.testing.assert_allclose(graph_val, np_val, rtol=1e-4, atol_multiplier=2)
def test_exit_condition(transformer_factory): bsz = 16 class_num = 10 # Limiting maximum absolute value for tensors elements to 7.9. # # There is used np.random.randn function to fill tensors with random values. It can give any # value as a result however values above 5 are highly improbable and would appear very rarely. # Limit 7.9 would almost never modify the tested tensor but would prevent from random # failures from time to time when the test is run in continuous environment. # This limit is approximate upper bound of range [4, 8). Numbers from this region can be # expressed by flexpoint number of the same dec. # Why not 15.9 that is approximate limit of [8, 16) range ? # Numbers above 8 are highly improbable and if appear from time to time can cause random # failures due to reduced accuracy of all numbers in tensor. Most numbers in normal # distribution are close to 0. is_flex = is_flex_factory(transformer_factory) clip_val = 7.9 if is_flex else 0 N, Y = ng.make_axis(bsz), ng.make_axis(class_num) y_val = rng.randn_abs_clip(ng.make_axes([N, Y]), clip_max=clip_val) y = ng.constant(y_val, ng.make_axes([N, Y])) likelihood = ng.log(ng.softmax(y, normalization_axes=y.axes[1])) with ExecutorFactory() as ex: comp = ex.executor(likelihood) val1 = comp() val2 = comp() ng.testing.assert_allclose(val1, val2, atol=0, rtol=0)
def test_4d_chained(transformer_factory, input_axes): # Limiting maximum absolute value for tensors elements to 7.9. # See description in function test_exit_condition above # Limitting minimum absolute value for tensors being input to reciprocal operation to 1/7.9 # # This is consequence of the above and flexpoint accuracy. # Numbers very small have poor absolute accuracy. When reciprocal of them is calculated the # results becomes very large and has even worse accuracy. When small numbers would be accepted # as an input to reciprocal in the test the absolute maximum value of the result is undefined # and so absolute tolerance. # To have possibility to set atol in the test and test could pass with it minimum element of # the tensor that is input to reciprocal operation has to be limited. is_flex = is_flex_factory(transformer_factory) clip_val_max = 7.9 if is_flex else 0 clip_val_min = 1.0 / 7.9 if is_flex else 0 x_val = rng.randn_abs_clip(input_axes, clip_min=clip_val_min, clip_max=clip_val_max) y_val = rng.randn_abs_clip(input_axes, clip_max=clip_val_max) x = ng.constant(x_val, input_axes) y = ng.constant(y_val, input_axes) im = ng.reciprocal(x) out = ng.sum(ng.add(im, y), reduction_axes=input_axes[0]) with executor(out) as ex: graph_val = ex() np_val = np.sum(np.add(np.reciprocal(x_val), y_val), 0) # atol_multiplier = 15 * x_val.shape[0] # # x_val.shape[0] is number elements added together in operation # ng.sum(X, reduction_axes=input_axes[0]) # # 15 is calculated the following way: # # Input tensor has values from the range 1/7.9 - 7.9 # For DEC=12 absolute error is equal to 0.5*2^-12 = 0.000122 # 1/7.9 = 0.126582 with this error becomes 0.126704 # Reciprocal of 1/7.9 is 7.9 # Reciprocal of 1/7.9 + err = 7.892389 # Absolute difference is 0.007611 # It is 15.2 times larger then atol limit 5e-4 from Argon transformer ng.testing.assert_allclose(graph_val, np_val, rtol=1e-4, atol_multiplier=15 * x_val.shape[0])
def test_4d_reduction(transformer_factory, input_axes): # Limiting maximum absolute value for tensors elements to 7.9. # See description in function test_exit_condition above is_flex = is_flex_factory(transformer_factory) clip_val = 7.9 if is_flex else 0 x_val = rng.randn_abs_clip(input_axes, clip_max=clip_val) x = ng.constant(x_val, input_axes) out1 = ng.sum(x, reduction_axes=input_axes[1]) out2 = ng.sum(x, reduction_axes=input_axes[3]) with executor([out1, out2]) as ex: graph_val1, graph_val2 = ex() np_val1 = np.sum(x_val, 1) np_val2 = np.sum(x_val, 3) ng.testing.assert_allclose(graph_val1, np_val1, rtol=1e-4, atol_multiplier=x_val.shape[1]) ng.testing.assert_allclose(graph_val2, np_val2, rtol=1e-4, atol_multiplier=x_val.shape[3])
def test_4d_elementwise(transformer_factory, input_axes): # Limiting maximum absolute value for tensors elements to 7.9. # See description in function test_exit_condition above is_flex = is_flex_factory(transformer_factory) clip_val = 7.9 if is_flex else 0 x_val = rng.randn_abs_clip(input_axes, clip_max=clip_val) y_val = rng.randn_abs_clip(input_axes, clip_max=clip_val) x = ng.constant(x_val, input_axes) y = ng.constant(y_val, input_axes) out = ng.add(x, y) with executor(out) as ex: graph_val = ex() np_val = np.add(x_val, y_val) ng.testing.assert_allclose(graph_val, np_val, rtol=1e-4)