Example #1
0
    def load_data(self):
        data_file = os.path.join(
            self.path,
            'findata-' + str(self.nlags) + '-' + str(self.quick) + '.pkl')
        if os.path.exists(data_file):
            print("Loading cached data from %s" % data_file)
            (self.nfeats, self.train_x, self.train_y, self.valid_x,
             self.valid_y) = pickle.load(file(data_file))
            return

        print("Processing data...")
        full = pd.read_hdf(os.path.join(self.path, self.filename), 'train')
        meds = full.median(axis=0)
        full.fillna(meds, inplace=True)
        cols = [
            col for col in full.columns if col not in ['id', 'timestamp', 'y']
        ]
        self.nfeats = len(cols)

        uniq_ts = full['timestamp'].unique()
        mid = uniq_ts[len(uniq_ts) / 2]
        train = full[full.timestamp < mid].reset_index()
        valid = full[full.timestamp >= mid].reset_index()

        if self.quick:
            train = train[train.id < 200].reset_index()
            valid = valid[valid.id < 200].reset_index()

        train_x, train_y = self.process(train, cols, self.nlags)
        valid_x, valid_y = self.process(valid, cols, self.nlags)
        self.train_x, self.train_y = self.shuffle(train_x, train_y)
        self.valid_x, self.valid_y = valid_x, valid_y
        pickle.dump((self.nfeats, self.train_x, self.train_y, self.valid_x,
                     self.valid_y), file(data_file, 'w'))
        print("Saved data to %s" % data_file)
Example #2
0
def run_voc_eval(annopath, imagesetfile, year, image_set, classes, output_dir):
    aps = []
    # The PASCAL VOC metric changed in 2010
    use_07_metric = True if int(year) < 2010 else False
    neon_logger.display('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
    for i, cls in enumerate(classes):
        if cls == '__background__':
            continue
        filename = 'voc_{}_{}_{}.txt'.format(
            year, image_set, cls)
        filepath = os.path.join(output_dir, filename)
        rec, prec, ap = voc_eval(filepath, annopath, imagesetfile, cls,
                                 output_dir, ovthresh=0.5, use_07_metric=use_07_metric)
        aps += [ap]
        neon_logger.display('AP for {} = {:.4f}'.format(cls, ap))
        with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
            pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f, 2)
    neon_logger.display('Mean AP = {:.4f}'.format(np.mean(aps)))
Example #3
0
    def zca_whiten(train, test, cache=None):
        """
        Use train set statistics to apply the ZCA whitening transform to
        both train and test sets.
        """
        if cache and os.path.isfile(cache):
            with open(cache, 'rb') as f:
                (meanX, W) = pickle_load(f)
        else:
            meanX, W = CIFAR10._compute_zca_transform(train)
            if cache:
                logger.info("Caching ZCA transform matrix")
                with open(cache, 'wb') as f:
                    pickle.dump((meanX, W), f, 2)

        logger.info("Applying ZCA whitening transform")
        train_w = np.dot(train - meanX, W)
        test_w = np.dot(test - meanX, W)

        return train_w, test_w
Example #4
0
    def zca_whiten(train, test, cache=None):
        """
        Use train set statistics to apply the ZCA whitening transform to
        both train and test sets.
        """
        if cache and os.path.isfile(cache):
            with open(cache, 'rb') as f:
                (meanX, W) = pickle_load(f)
        else:
            meanX, W = CIFAR10._compute_zca_transform(train)
            if cache:
                logger.info("Caching ZCA transform matrix")
                with open(cache, 'wb') as f:
                    pickle.dump((meanX, W), f, 2)

        logger.info("Applying ZCA whitening transform")
        train_w = np.dot(train - meanX, W)
        test_w = np.dot(test - meanX, W)

        return train_w, test_w
Example #5
0
def run_voc_eval(annopath, imagesetfile, year, image_set, classes, output_dir):
    aps = []
    # The PASCAL VOC metric changed in 2010
    use_07_metric = True if int(year) < 2010 else False
    neon_logger.display('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
    for i, cls in enumerate(classes):
        if cls == '__background__':
            continue
        filename = 'voc_{}_{}_{}.txt'.format(year, image_set, cls)
        filepath = os.path.join(output_dir, filename)
        rec, prec, ap = voc_eval(filepath,
                                 annopath,
                                 imagesetfile,
                                 cls,
                                 output_dir,
                                 ovthresh=0.5,
                                 use_07_metric=use_07_metric)
        aps += [ap]
        neon_logger.display('AP for {} = {:.4f}'.format(cls, ap))
        with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
            pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f, 2)
    neon_logger.display('Mean AP = {:.4f}'.format(np.mean(aps)))
Example #6
0
def save_obj(obj, save_path):
    """
    Dumps a python data structure to a saved on-disk representation.  We
    currently support writing to the following file formats (expected filename
    extension in brackets):

        * python pickle (.pkl)

    Arguments:
        obj (object): the python object to be saved.
        save_path (str): Where to write the serialized object (full path and
                         file name)

    See Also:
        :py:func:`~neon.models.model.Model.serialize`
    """
    if save_path is None or len(save_path) == 0:
        return
    save_path = os.path.expandvars(os.path.expanduser(save_path))
    logger.debug("serializing object to: %s", save_path)
    ensure_dirs_exist(save_path)

    pickle.dump(obj, open(save_path, 'wb'), 2)
Example #7
0
def save_obj(obj, save_path):
    """
    Dumps a python data structure to a saved on-disk representation.  We
    currently support writing to the following file formats (expected filename
    extension in brackets):

        * python pickle (.pkl)

    Arguments:
        obj (object): the python object to be saved.
        save_path (str): Where to write the serialized object (full path and
                         file name)

    See Also:
        :py:func:`~neon.models.model.Model.serialize`
    """
    if save_path is None or len(save_path) == 0:
        return
    save_path = os.path.expandvars(os.path.expanduser(save_path))
    logger.debug("serializing object to: %s", save_path)
    ensure_dirs_exist(save_path)

    pickle.dump(obj, open(save_path, 'wb'), 2)
Example #8
0
 def serialize(self, obj, save_path):
     fd = open(save_path, 'w')
     pickle.dump(obj, fd, -1)
     fd.close()
Example #9
0
def build_data_train(path='.',
                     filepath='labeledTrainData.tsv',
                     vocab_file=None,
                     vocab=None,
                     skip_headers=True,
                     train_ratio=0.8):
    """
    Loads the data file and spits out a h5 file with record of
    {y, review_text, review_int}
    Typically two passes over the data.
    1st pass is for vocab and pre-processing. (WARNING: to get phrases, we need to go
    though multiple passes). 2nd pass is converting text into integers. We will deal with integers
    from thereafter.

    WARNING: we use h5 just as proof of concept for handling large datasets
    Datasets may fit entirely in memory as numpy as array

    """

    fname_h5 = filepath + '.h5'
    if vocab_file is None:
        fname_vocab = filepath + '.vocab'
    else:
        fname_vocab = vocab_file

    if not os.path.exists(fname_h5) or not os.path.exists(fname_vocab):
        # create the h5 store - NOTE: hdf5 is row-oriented store and we slice rows
        # reviews_text holds the metadata and processed text file
        # reviews_int holds the ratings, ints
        h5f = h5py.File(fname_h5, 'w')
        shape, maxshape = (2**16, ), (None, )
        dt = np.dtype([
            ('y', np.uint8),
            ('split', np.bool),
            ('num_words', np.uint16),
            # WARNING: vlen=bytes in python 3
            ('text', h5py.special_dtype(vlen=str))
        ])
        reviews_text = h5f.create_dataset('reviews',
                                          shape=shape,
                                          maxshape=maxshape,
                                          dtype=dt,
                                          compression='gzip')
        reviews_train = h5f.create_dataset(
            'train',
            shape=shape,
            maxshape=maxshape,
            dtype=h5py.special_dtype(vlen=np.int32),
            compression='gzip')

        reviews_valid = h5f.create_dataset(
            'valid',
            shape=shape,
            maxshape=maxshape,
            dtype=h5py.special_dtype(vlen=np.int32),
            compression='gzip')

        wdata = np.zeros((1, ), dtype=dt)

        # init vocab only for train data
        build_vocab = False
        if vocab is None:
            vocab = defaultdict(int)
            build_vocab = True
        nsamples = 0

        # open the file, skip the headers if needed
        f = open(filepath, 'r')
        if skip_headers:
            f.readline()

        for i, line in enumerate(f):
            _, rating, review = line.strip().split('\t')

            # clean the review
            review = clean_string(review)
            review_words = review.strip().split()
            num_words = len(review_words)
            split = int(np.random.rand() < train_ratio)

            # create record
            wdata['y'] = int(float(rating))
            wdata['text'] = review
            wdata['num_words'] = num_words
            wdata['split'] = split
            reviews_text[i] = wdata

            # update the vocab if needed
            if build_vocab:
                for word in review_words:
                    vocab[word] += 1

            nsamples += 1

        # histogram of class labels, sentence length
        ratings, counts = np.unique(reviews_text['y'][:nsamples],
                                    return_counts=True)
        sen_len, sen_len_counts = np.unique(
            reviews_text['num_words'][:nsamples], return_counts=True)
        vocab_size = len(vocab)
        nclass = len(ratings)
        reviews_text.attrs['vocab_size'] = vocab_size
        reviews_text.attrs['nrows'] = nsamples
        reviews_text.attrs['nclass'] = nclass
        reviews_text.attrs['class_distribution'] = counts
        neon_logger.display("vocabulary size - {}".format(vocab_size))
        neon_logger.display("# of samples - {}".format(nsamples))
        neon_logger.display("# of classes {}".format(nclass))
        neon_logger.display("class distribution - {} {}".format(
            ratings, counts))
        sen_counts = list(zip(sen_len, sen_len_counts))
        sen_counts = sorted(sen_counts, key=lambda kv: kv[1], reverse=True)
        neon_logger.display("sentence length - {} {} {}".format(
            len(sen_len), sen_len, sen_len_counts))

        # WARNING: assume vocab is of order ~4-5 million words.
        # sort the vocab , re-assign ids by its frequency. Useful for downstream tasks
        # only done for train data
        if build_vocab:
            vocab_sorted = sorted(list(vocab.items()),
                                  key=lambda kv: kv[1],
                                  reverse=True)
            vocab = {}
            for i, t in enumerate(list(zip(*vocab_sorted))[0]):
                vocab[t] = i

        # map text to integers
        ntrain = 0
        nvalid = 0
        for i in range(nsamples):
            text = reviews_text[i]['text']
            y = int(reviews_text[i]['y'])
            split = reviews_text[i]['split']
            text_int = [y] + [vocab[t] for t in text.strip().split()]
            if split:
                reviews_train[ntrain] = text_int
                ntrain += 1
            else:
                reviews_valid[nvalid] = text_int
                nvalid += 1
        reviews_text.attrs['ntrain'] = ntrain
        reviews_text.attrs['nvalid'] = nvalid
        neon_logger.display("# of train - {0}, # of valid - {1}".format(
            reviews_text.attrs['ntrain'], reviews_text.attrs['nvalid']))
        # close open files
        h5f.close()
        f.close()

    if not os.path.exists(fname_vocab):
        rev_vocab = {}
        for wrd, wrd_id in vocab.items():
            rev_vocab[wrd_id] = wrd
        neon_logger.display(
            "vocabulary from IMDB dataset is saved into {}".format(
                fname_vocab))
        pickle.dump((vocab, rev_vocab), open(fname_vocab, 'wb'), 2)

    return fname_h5, fname_vocab
Example #10
0
def voc_eval(detpath,
             annopath,
             imagesetfile,
             classname,
             cachedir,
             ovthresh=0.5,
             use_07_metric=False):
    """rec, prec, ap = voc_eval(detpath,
                                annopath,
                                imagesetfile,
                                classname,
                                [ovthresh],
                                [use_07_metric])

    Top level function that does the PASCAL VOC evaluation.

    detpath: Path to detections
        detpath.format(classname) should produce the detection results file.
    annopath: Path to annotations
        annopath.format(imagename) should be the xml annotations file.
    imagesetfile: Text file containing the list of images, one image per line.
    classname: Category name (duh)
    cachedir: Directory for caching the annotations
    [ovthresh]: Overlap threshold (default = 0.5)
    [use_07_metric]: Whether to use VOC07's 11 point AP computation
        (default False)
    """
    # assumes detections are in detpath.format(classname)
    # assumes annotations are in annopath.format(imagename)
    # assumes imagesetfile is a text file with each line an image name
    # cachedir caches the annotations in a pickle file

    # first load gt
    if not os.path.isdir(cachedir):
        os.mkdir(cachedir)
    cachefile = os.path.join(cachedir, 'annots.pkl')
    # read list of images
    with open(imagesetfile, 'rb') as f:
        lines = f.readlines()
    imagenames = [x.strip() for x in lines]

    if not os.path.isfile(cachefile):
        # load annots
        recs = {}
        for i, imagename in enumerate(imagenames):
            recs[imagename] = parse_rec(annopath.format(imagename))
            if i % 100 == 0:
                neon_logger.display('Reading annotation for {:d}/{:d}'.format(
                    i + 1, len(imagenames)))
        # save
        neon_logger.display(
            'Saving cached annotations to {:s}'.format(cachefile))
        with open(cachefile, 'wb') as f:
            pickle.dump(recs, f, 2)
    else:
        # load
        with open(cachefile, 'rb') as f:
            recs = pickle.load(f)

    # extract gt objects for this class
    class_recs = {}
    npos = 0
    for imagename in imagenames:
        R = [obj for obj in recs[imagename] if obj['name'] == classname]
        bbox = np.array([x['bbox'] for x in R])
        difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
        det = [False] * len(R)
        npos = npos + sum(~difficult)
        class_recs[imagename] = {
            'bbox': bbox,
            'difficult': difficult,
            'det': det
        }

    # read dets
    detfile = detpath.format(classname)
    with open(detfile, 'rb') as f:
        lines = f.readlines()

    splitlines = [x.strip().split(' ') for x in lines]
    image_ids = [x[0] for x in splitlines]
    confidence = np.array([float(x[1]) for x in splitlines])
    BB = np.array([[float(z) for z in x[2:]] for x in splitlines])

    # sort by confidence
    sorted_ind = np.argsort(-confidence)
    # sorted_scores = np.sort(-confidence)
    BB = BB[sorted_ind, :]
    image_ids = [image_ids[x] for x in sorted_ind]

    # go down dets and mark TPs and FPs
    nd = len(image_ids)
    tp = np.zeros(nd)
    fp = np.zeros(nd)
    for d in range(nd):
        R = class_recs[image_ids[d]]
        bb = BB[d, :].astype(float)
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float)

        if BBGT.size > 0:
            # compute overlaps
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1., 0.)
            ih = np.maximum(iymax - iymin + 1., 0.)
            inters = iw * ih

            # union
            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                   (BBGT[:, 2] - BBGT[:, 0] + 1.) *
                   (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)

            overlaps = inters / uni
            ovmax = np.max(overlaps)
            jmax = np.argmax(overlaps)

        if ovmax > ovthresh:
            if not R['difficult'][jmax]:
                if not R['det'][jmax]:
                    tp[d] = 1.
                    R['det'][jmax] = 1
                else:
                    fp[d] = 1.
        else:
            fp[d] = 1.

    # compute precision recall
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    rec = tp / float(npos)
    prec = tp / (tp + fp + 1e-10)
    ap = voc_ap(rec, prec, use_07_metric)

    return rec, prec, ap
Example #11
0
 def serialize(self, obj, save_path):
     fd = open(save_path, 'w')
     pickle.dump(obj, fd, -1)
     fd.close()
Example #12
0
def build_data_train(path='.', filepath='labeledTrainData.tsv', vocab_file=None,
                     vocab=None, skip_headers=True, train_ratio=0.8):
    """
    Loads the data file and spits out a h5 file with record of
    {y, review_text, review_int}
    Typically two passes over the data.
    1st pass is for vocab and pre-processing. (WARNING: to get phrases, we need to go
    though multiple passes). 2nd pass is converting text into integers. We will deal with integers
    from thereafter.

    WARNING: we use h5 just as proof of concept for handling large datasets
    Datasets may fit entirely in memory as numpy as array

    """

    fname_h5 = filepath + '.h5'
    if vocab_file is None:
        fname_vocab = filepath + '.vocab'
    else:
        fname_vocab = vocab_file

    if not os.path.exists(fname_h5) or not os.path.exists(fname_vocab):
        # create the h5 store - NOTE: hdf5 is row-oriented store and we slice rows
        # reviews_text holds the metadata and processed text file
        # reviews_int holds the ratings, ints
        h5f = h5py.File(fname_h5, 'w')
        shape, maxshape = (2 ** 16,), (None, )
        dt = np.dtype([('y', np.uint8),
                       ('split', np.bool),
                       ('num_words', np.uint16),
                       # WARNING: vlen=bytes in python 3
                       ('text', h5py.special_dtype(vlen=str))
                       ])
        reviews_text = h5f.create_dataset('reviews', shape=shape, maxshape=maxshape,
                                          dtype=dt, compression='gzip')
        reviews_train = h5f.create_dataset(
            'train', shape=shape, maxshape=maxshape,
            dtype=h5py.special_dtype(vlen=np.int32), compression='gzip')

        reviews_valid = h5f.create_dataset(
            'valid', shape=shape, maxshape=maxshape,
            dtype=h5py.special_dtype(vlen=np.int32), compression='gzip')

        wdata = np.zeros((1, ), dtype=dt)

        # init vocab only for train data
        build_vocab = False
        if vocab is None:
            vocab = defaultdict(int)
            build_vocab = True
        nsamples = 0

        # open the file, skip the headers if needed
        f = open(filepath, 'r')
        if skip_headers:
            f.readline()

        for i, line in enumerate(f):
            _, rating, review = line.strip().split('\t')

            # clean the review
            review = clean_string(review)
            review_words = review.strip().split()
            num_words = len(review_words)
            split = int(np.random.rand() < train_ratio)

            # create record
            wdata['y'] = int(float(rating))
            wdata['text'] = review
            wdata['num_words'] = num_words
            wdata['split'] = split
            reviews_text[i] = wdata

            # update the vocab if needed
            if build_vocab:
                for word in review_words:
                    vocab[word] += 1

            nsamples += 1

        # histogram of class labels, sentence length
        ratings, counts = np.unique(
            reviews_text['y'][:nsamples], return_counts=True)
        sen_len, sen_len_counts = np.unique(
            reviews_text['num_words'][:nsamples], return_counts=True)
        vocab_size = len(vocab)
        nclass = len(ratings)
        reviews_text.attrs['vocab_size'] = vocab_size
        reviews_text.attrs['nrows'] = nsamples
        reviews_text.attrs['nclass'] = nclass
        reviews_text.attrs['class_distribution'] = counts
        neon_logger.display("vocabulary size - {}".format(vocab_size))
        neon_logger.display("# of samples - {}".format(nsamples))
        neon_logger.display("# of classes {}".format(nclass))
        neon_logger.display("class distribution - {} {}".format(ratings, counts))
        sen_counts = list(zip(sen_len, sen_len_counts))
        sen_counts = sorted(sen_counts, key=lambda kv: kv[1], reverse=True)
        neon_logger.display("sentence length - {} {} {}".format(len(sen_len),
                                                                sen_len, sen_len_counts))

        # WARNING: assume vocab is of order ~4-5 million words.
        # sort the vocab , re-assign ids by its frequency. Useful for downstream tasks
        # only done for train data
        if build_vocab:
            vocab_sorted = sorted(
                list(vocab.items()), key=lambda kv: kv[1], reverse=True)
            vocab = {}
            for i, t in enumerate(zip(*vocab_sorted)[0]):
                vocab[t] = i

        # map text to integers
        ntrain = 0
        nvalid = 0
        for i in range(nsamples):
            text = reviews_text[i]['text']
            y = int(reviews_text[i]['y'])
            split = reviews_text[i]['split']
            text_int = [y] + [vocab[t] for t in text.strip().split()]
            if split:
                reviews_train[ntrain] = text_int
                ntrain += 1
            else:
                reviews_valid[nvalid] = text_int
                nvalid += 1
        reviews_text.attrs['ntrain'] = ntrain
        reviews_text.attrs['nvalid'] = nvalid
        neon_logger.display(
            "# of train - {0}, # of valid - {1}".format(reviews_text.attrs['ntrain'],
                                                        reviews_text.attrs['nvalid']))
        # close open files
        h5f.close()
        f.close()

    if not os.path.exists(fname_vocab):
        rev_vocab = {}
        for wrd, wrd_id in vocab.items():
            rev_vocab[wrd_id] = wrd
        neon_logger.display("vocabulary from IMDB dataset is saved into {}".format(fname_vocab))
        pickle.dump((vocab, rev_vocab), open(fname_vocab, 'wb'), 2)

    return fname_h5, fname_vocab
Example #13
0
def my_pickle(filename, data):
    with open(filename, "w") as fo:
        pickle.dump(data, fo, protocol=pickle.HIGHEST_PROTOCOL)
Example #14
0
def voc_eval(detpath,
             annopath,
             imagesetfile,
             classname,
             cachedir,
             ovthresh=0.5,
             use_07_metric=False):
    """rec, prec, ap = voc_eval(detpath,
                                annopath,
                                imagesetfile,
                                classname,
                                [ovthresh],
                                [use_07_metric])

    Top level function that does the PASCAL VOC evaluation.

    detpath: Path to detections
        detpath.format(classname) should produce the detection results file.
    annopath: Path to annotations
        annopath.format(imagename) should be the xml annotations file.
    imagesetfile: Text file containing the list of images, one image per line.
    classname: Category name (duh)
    cachedir: Directory for caching the annotations
    [ovthresh]: Overlap threshold (default = 0.5)
    [use_07_metric]: Whether to use VOC07's 11 point AP computation
        (default False)
    """
    # assumes detections are in detpath.format(classname)
    # assumes annotations are in annopath.format(imagename)
    # assumes imagesetfile is a text file with each line an image name
    # cachedir caches the annotations in a pickle file

    # first load gt
    if not os.path.isdir(cachedir):
        os.mkdir(cachedir)
    cachefile = os.path.join(cachedir, 'annots.pkl')
    # read list of images
    with open(imagesetfile, 'rb') as f:
        lines = f.readlines()
    imagenames = [x.strip() for x in lines]

    if not os.path.isfile(cachefile):
        # load annots
        recs = {}
        for i, imagename in enumerate(imagenames):
            recs[imagename] = parse_rec(annopath.format(imagename))
            if i % 100 == 0:
                neon_logger.display('Reading annotation for {:d}/{:d}'.format(
                    i + 1, len(imagenames)))
        # save
        neon_logger.display(
            'Saving cached annotations to {:s}'.format(cachefile))
        with open(cachefile, 'wb') as f:
            pickle.dump(recs, f, 2)
    else:
        # load
        with open(cachefile, 'rb') as f:
            recs = pickle.load(f)

    # extract gt objects for this class
    class_recs = {}
    npos = 0
    for imagename in imagenames:
        R = [obj for obj in recs[imagename] if obj['name'] == classname]
        bbox = np.array([x['bbox'] for x in R])
        difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
        det = [False] * len(R)
        npos = npos + sum(~difficult)
        class_recs[imagename] = {'bbox': bbox,
                                 'difficult': difficult,
                                 'det': det}

    # read dets
    detfile = detpath.format(classname)
    with open(detfile, 'rb') as f:
        lines = f.readlines()

    splitlines = [x.strip().split(' ') for x in lines]
    image_ids = [x[0] for x in splitlines]
    confidence = np.array([float(x[1]) for x in splitlines])
    BB = np.array([[float(z) for z in x[2:]] for x in splitlines])

    # sort by confidence
    sorted_ind = np.argsort(-confidence)
    # sorted_scores = np.sort(-confidence)
    BB = BB[sorted_ind, :]
    image_ids = [image_ids[x] for x in sorted_ind]

    # go down dets and mark TPs and FPs
    nd = len(image_ids)
    tp = np.zeros(nd)
    fp = np.zeros(nd)
    for d in range(nd):
        R = class_recs[image_ids[d]]
        bb = BB[d, :].astype(float)
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float)

        if BBGT.size > 0:
            # compute overlaps
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1., 0.)
            ih = np.maximum(iymax - iymin + 1., 0.)
            inters = iw * ih

            # union
            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                   (BBGT[:, 2] - BBGT[:, 0] + 1.) *
                   (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)

            overlaps = inters / uni
            ovmax = np.max(overlaps)
            jmax = np.argmax(overlaps)

        if ovmax > ovthresh:
            if not R['difficult'][jmax]:
                if not R['det'][jmax]:
                    tp[d] = 1.
                    R['det'][jmax] = 1
                else:
                    fp[d] = 1.
        else:
            fp[d] = 1.

    # compute precision recall
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    rec = tp / float(npos)
    prec = tp / (tp + fp + 1e-10)
    ap = voc_ap(rec, prec, use_07_metric)

    return rec, prec, ap