Example #1
0
 def variable_update(self, variable, grad, scale_factor, weight_clip_value):
     grad = clip_gradient_value(grad, self.gradient_clip_value)
     state = ng.persistent_tensor(axes=grad.axes, initial_value=0.)
     updates = ng.sequential([
         ng.assign(state, state + ng.square(grad)),
         ng.assign(variable,
                   clip_weight_value(variable - (scale_factor * self.lrate * grad) /
                                     (ng.sqrt(state + self.epsilon)), weight_clip_value))
     ])
     return updates
def test_sequential_side(M):
    x1_np = 2
    x2_np = 3
    b_np = 1
    x_np = np.array([1, 2, 3], dtype=np.float32)

    x = ng.variable([M], initial_value=x_np)
    x1 = ng.persistent_tensor(axes=(), initial_value=x1_np)
    x2 = ng.persistent_tensor(axes=(), initial_value=x2_np)
    x1_vo = ng.value_of(x1)
    x2_vo = ng.value_of(x2)
    b = ng.persistent_tensor(axes=(), initial_value=b_np)

    y = ng.sequential([
        x1_vo, x2_vo,
        ng.assign(x1,
                  ng.sum(x, out_axes=()) + x1 * b + (1 - b)),
        ng.assign(x2,
                  ng.mean(x, out_axes=()) + x2 * b + (1 - b)), x * 2
    ])

    with ExecutorFactory() as ex:
        main_effect = ex.executor((y, x1_vo, x2_vo, x1, x2))
        current_values = ex.executor((x1, x2))

        # Run main path #1
        y_val, x1_init_val, x2_init_val, x1_final_val, x2_final_val = main_effect(
        )
        y_np = x_np * 2

        assert np.allclose(y_val, y_np)
        assert np.allclose(x1_init_val, x1_np)
        assert np.allclose(x2_init_val, x2_np)
        x1_np = np.sum(x_np) + x1_np * b_np + (1 - b_np)
        x2_np = np.mean(x_np) + x2_np * b_np + (1 - b_np)
        assert np.allclose(x1_final_val, x1_np)
        assert np.allclose(x2_final_val, x2_np)

        x1_val, x2_val = current_values()
        assert np.allclose(x1_val, x1_np)
        assert np.allclose(x2_val, x2_np)

        # Run main path #2 (Should be the same as before)
        y_val, x1_init_val, x2_init_val, x1_final_val, x2_final_val = main_effect(
        )
        y_np = x_np * 2

        assert np.allclose(y_val, y_np)
        assert np.allclose(x1_init_val, x1_np)
        assert np.allclose(x2_init_val, x2_np)
        x1_np = np.sum(x_np) + x1_np * b_np + (1 - b_np)
        x2_np = np.mean(x_np) + x2_np * b_np + (1 - b_np)
        assert np.allclose(x1_final_val, x1_np)
        assert np.allclose(x2_final_val, x2_np)
Example #3
0
 def variable_update(self, variable, grad, scale_factor, weight_clip_value):
     m = ng.persistent_tensor(axes=grad.axes, initial_value=0.)
     v = ng.persistent_tensor(axes=grad.axes, initial_value=0.)
     updates = ng.sequential([
         ng.assign(m, m * self.beta_1 + (1 - self.beta_1) * grad),
         ng.assign(v, v * self.beta_2 + (1 - self.beta_2) * grad * grad),
         ng.assign(variable,
                   clip_weight_value(variable - (scale_factor * self.ell * m) /
                                     (ng.sqrt(v) + self.epsilon), weight_clip_value))
     ])
     return updates
Example #4
0
 def variable_update(self, variable, grad, scale_factor, weight_clip_value):
     epsilon, decay = (self.epsilon, self.decay_rate)
     grad = clip_gradient_value(grad, self.gradient_clip_value)
     state = ng.persistent_tensor(axes=variable.axes, initial_value=1.)
     velocity = ng.persistent_tensor(axes=variable.axes,
                                     initial_value=0.).named(variable.name + '_vel')
     updates = ng.sequential([
         ng.assign(state, decay * state + (1.0 - decay) * ng.square(grad)),
         ng.assign(velocity, velocity * self.momentum +
                   (self.lrate * scale_factor * grad / ng.sqrt(state + epsilon)) +
                   self.lrate * self.wdecay * variable),
         ng.assign(variable, clip_weight_value(variable - velocity, weight_clip_value))
     ])
     return updates
Example #5
0
def test_modify_state():
    with ExecutorFactory() as ex:
        N = ng.make_axis(3, name='N')
        x_np = np.ones((N.length)) * 4
        x = ng.variable([N], initial_value=x_np).named('x')
        val = ng.sequential([ng.assign(x, x + x), x])
        f = ex.executor(val)
        x_val = f()
        assert np.allclose(x_np + x_np, x_val)
def test_sequential(N):
    x = ng.variable([N], initial_value=0)
    x0 = x + x
    x1 = x + x
    p = ng.sequential([x0, ng.assign(x, 2), x1, x0])
    with ExecutorFactory() as ex:
        x0_val, x1_val, p_val = ex.executor([x0, x1, p])()
    assert x0_val == 0
    assert x1_val == 4
    assert p_val == 0
Example #7
0
    def __call__(self, *args, **kwargs):
        if len(self.ops) == 0:
            self.beta_1 = ng.constant(self.beta_1, dtype=np.float32)
            self.beta_2 = ng.constant(self.beta_2, dtype=np.float32)
            self.t = ng.persistent_tensor(axes=(), initial_value=0)

        self.t = ng.sequential([ng.assign(self.t, self.t + 1), self.t])
        self.ell = self.lrate * ng.sqrt(1 - self.beta_2 ** self.t) / (1 - self.beta_1 ** self.t)

        return super(Adam, self).__call__(*args, **kwargs)
Example #8
0
 def variable_update(self, variable, grad, scale_factor, weight_clip_value):
     updates = []
     """
     for op in ng.Op.ordered_ops([grad]):
         op_var = ng.persistent_tensor(axes=op.tensor.axes,
                                       initial_value=0.).named(variable.name + '_' + op.name)
         updates.append(ng.assign(op_var, op))
     """
     velocity = ng.persistent_tensor(axes=variable.axes,
                                     initial_value=0.).named(variable.name + '_vel')
     clip_grad = clip_gradient_value(grad, self.gradient_clip_value)
     lr = - self.lrate * (scale_factor * clip_grad + self.wdecay * variable)
     updates.append(ng.assign(velocity, velocity * self.momentum_coef + lr))
     if self.nesterov:
         delta = (self.momentum_coef * velocity + lr)
     else:
         delta = velocity
     updates.append(ng.assign(variable, clip_weight_value(variable + delta, weight_clip_value)))
     return ng.sequential(updates)
    def __call__(self, in_obj):
        if not self.initialized:
            w_axis = ng.make_axis()
            self.weight = ng.variable(axes=[w_axis],
                                      initial_value=2,
                                      metadata={"label": LABELS["weight"]},
                                      name="W")
            self.side_effect = ng.persistent_tensor(axes=[w_axis],
                                                    initial_value=0)

        return ng.sequential([ng.assign(self.side_effect, self.weight),
                              self.weight * in_obj])
def test_scope_ops(input_placeholder):
    """
    Test scope_ops creates a subgraph with correct attributes
    """

    with scope_ops(name="foo") as subgraph:
        w = ng.variable(ng.make_axis(), initial_value=1, name="W")
        y = w * input_placeholder
        z = y + 4
        v1 = ng.persistent_tensor(w.axes, initial_value=0, name="effect1")
        v2 = ng.persistent_tensor(w.axes, initial_value=0, name="effect2")
        ng.sequential([ng.assign(v1, w), ng.assign(v2, w), z.named("output")])

    assert len(subgraph.inputs) == 1
    assert input_placeholder.unscoped_name in subgraph.inputs

    assert len(subgraph.variables) == 1
    assert "W" in subgraph.variables

    assert len(subgraph.outputs) == 1
    assert "output" in subgraph.outputs

    assert len(subgraph.side_effects) == 2
Example #11
0
def test_logreg():
    # xs: (C, N), y: (N,)
    xs = np.array([[0.52, 0.88, 0.52, 0.74], [1.12, -1.08, 0.06, -2.49],
                   [0.77, 0.15, -1.3, 1.39]])
    ys = np.array([1, 1, 0, 1])
    max_iter = 10
    alpha = 0.1
    thetas = np.array([0., 0., 0.])

    np_logreg = NumpyLogreg(xs, ys, thetas)

    C, N = ng.make_axis(length=3), ng.make_axis(length=4)

    # input tensors
    xs_v = ng.placeholder((C, N))
    ys_v = ng.placeholder([N])
    alpha_v = ng.placeholder(())
    thetas_var = ng.variable([C], initial_value=thetas)

    # define ops
    ys_pred = ng.sigmoid(ng.dot(thetas_var, xs_v))
    log_likelihoods = ng.log(ys_pred) * ys_v + ng.log(1 - ys_pred) * (1 - ys_v)
    loss = -ng.sum(log_likelihoods, reduction_axes=[N])
    grad_comp = ng.deriv(loss, thetas_var)
    weight_update = ng.sequential(
        [ng.assign(thetas_var, thetas_var - alpha_v * grad_comp), thetas_var])

    # transformer
    with ExecutorFactory() as ex:
        train_eval_func = ex.executor([grad_comp, loss, weight_update], xs_v,
                                      ys_v, alpha_v)

        # evaluate
        for i in range(max_iter):
            grad_np, loss_np, thetas_np = np_logreg.optimize(alpha)
            grad_ng, loss_ng, thetas_ng = train_eval_func(xs, ys, alpha)
            ng.testing.assert_allclose(loss_np, loss_ng, rtol=1e-05, atol=1e-05, \
                                       transformer_overwrite=False)
            ng.testing.assert_allclose(grad_np, grad_ng,  rtol=1e-05, atol=1e-05, \
                                       transformer_overwrite=False)
            ng.testing.assert_allclose(thetas_np, thetas_ng, rtol=1e-05, atol=1e-05, \
                                       transformer_overwrite=False)
Example #12
0
    def minimize(self, cost, variables):
        """
        Minimize cost by returning update Ops.

        Arguments:
            cost: The cost Op to be minimized
            variables: TODO

        Returns:
            A doall op containing setitems to variable ops.
        """

        assert cost is not None
        assert variables is not None

        return ng.doall([
            ng.assign(variable,
                      variable - self.compute_lr_op * ng.deriv(cost, variable))
            for variable in variables
        ])