Example #1
0
def q_retrace(rewards, dones, q_i, values, rho_i, n_envs, n_steps, gamma):
    """
    Calculates the target Q-retrace

    :param rewards: ([TensorFlow Tensor]) The rewards
    :param dones: ([TensorFlow Tensor])
    :param q_i: ([TensorFlow Tensor]) The Q values for actions taken
    :param values: ([TensorFlow Tensor]) The output of the value functions
    :param rho_i: ([TensorFlow Tensor]) The importance weight for each action
    :param n_envs: (int) The number of environments
    :param n_steps: (int) The number of steps to run for each environment
    :param gamma: (float) The discount value
    :return: ([TensorFlow Tensor]) the target Q-retrace
    """
    rho_bar = batch_to_seq(tf.minimum(1.0, rho_i), n_envs, n_steps, True)  # list of len steps, shape [n_envs]
    reward_seq = batch_to_seq(rewards, n_envs, n_steps, True)  # list of len steps, shape [n_envs]
    done_seq = batch_to_seq(dones, n_envs, n_steps, True)  # list of len steps, shape [n_envs]
    q_is = batch_to_seq(q_i, n_envs, n_steps, True)
    value_sequence = batch_to_seq(values, n_envs, n_steps + 1, True)
    final_value = value_sequence[-1]
    qret = final_value
    qrets = []
    for i in range(n_steps - 1, -1, -1):
        check_shape([qret, done_seq[i], reward_seq[i], rho_bar[i], q_is[i], value_sequence[i]], [[n_envs]] * 6)
        qret = reward_seq[i] + gamma * qret * (1.0 - done_seq[i])
        qrets.append(qret)
        qret = (rho_bar[i] * (qret - q_is[i])) + value_sequence[i]
    qrets = qrets[::-1]
    qret = seq_to_batch(qrets, flat=True)
    return qret
Example #2
0
def strip(var, n_envs, n_steps, flat=False):
    """
    Removes the last step in the batch

    :param var: (TensorFlow Tensor) The input Tensor
    :param n_envs: (int) The number of environments
    :param n_steps: (int) The number of steps to run for each environment
    :param flat: (bool) If the input Tensor is flat
    :return: (TensorFlow Tensor) the input tensor, without the last step in the batch
    """
    out_vars = batch_to_seq(var, n_envs, n_steps + 1, flat)
    return seq_to_batch(out_vars[:-1], flat)
Example #3
0
    def __init__(self,
                 sess,
                 ob_space,
                 ac_space,
                 n_env,
                 n_steps,
                 n_batch,
                 n_lstm=256,
                 reuse=False,
                 layers=None,
                 net_arch=None,
                 act_fun=tf.tanh,
                 cnn_extractor=nature_cnn,
                 layer_norm=False,
                 feature_extraction="cnn",
                 **kwargs):
        # state_shape = [n_lstm * 2] dim because of the cell and hidden states of the LSTM
        super(LstmPolicy, self).__init__(sess,
                                         ob_space,
                                         ac_space,
                                         n_env,
                                         n_steps,
                                         n_batch,
                                         state_shape=(2 * n_lstm, ),
                                         reuse=reuse,
                                         scale=(feature_extraction == "cnn"))

        self._kwargs_check(feature_extraction, kwargs)

        if net_arch is None:  # Legacy mode
            if layers is None:
                layers = [64, 64]
            else:
                warnings.warn(
                    "The layers parameter is deprecated. Use the net_arch parameter instead."
                )

            with tf.variable_scope("model", reuse=reuse):
                if feature_extraction == "cnn":
                    extracted_features = cnn_extractor(self.processed_obs,
                                                       **kwargs)
                else:
                    extracted_features = tf.layers.flatten(self.processed_obs)
                    for i, layer_size in enumerate(layers):
                        extracted_features = act_fun(
                            linear(extracted_features,
                                   'pi_fc' + str(i),
                                   n_hidden=layer_size,
                                   init_scale=np.sqrt(2)))
                input_sequence = batch_to_seq(extracted_features, self.n_env,
                                              n_steps)
                masks = batch_to_seq(self.dones_ph, self.n_env, n_steps)
                rnn_output, self.snew = lstm(input_sequence,
                                             masks,
                                             self.states_ph,
                                             'lstm1',
                                             n_hidden=n_lstm,
                                             layer_norm=layer_norm)
                rnn_output = seq_to_batch(rnn_output)
                value_fn = linear(rnn_output, 'vf', 1)

                self._proba_distribution, self._policy, self.q_value = \
                    self.pdtype.proba_distribution_from_latent(rnn_output, rnn_output)

            self._value_fn = value_fn
        else:  # Use the new net_arch parameter
            if layers is not None:
                warnings.warn(
                    "The new net_arch parameter overrides the deprecated layers parameter."
                )
            if feature_extraction == "cnn":
                raise NotImplementedError()

            with tf.variable_scope("model", reuse=reuse):
                latent = tf.layers.flatten(self.processed_obs)
                policy_only_layers = [
                ]  # Layer sizes of the network that only belongs to the policy network
                value_only_layers = [
                ]  # Layer sizes of the network that only belongs to the value network

                # Iterate through the shared layers and build the shared parts of the network
                lstm_layer_constructed = False
                for idx, layer in enumerate(net_arch):
                    if isinstance(layer,
                                  int):  # Check that this is a shared layer
                        layer_size = layer
                        latent = act_fun(
                            linear(latent,
                                   "shared_fc{}".format(idx),
                                   layer_size,
                                   init_scale=np.sqrt(2)))
                    elif layer == "lstm":
                        if lstm_layer_constructed:
                            raise ValueError(
                                "The net_arch parameter must only contain one occurrence of 'lstm'!"
                            )
                        input_sequence = batch_to_seq(latent, self.n_env,
                                                      n_steps)
                        masks = batch_to_seq(self.dones_ph, self.n_env,
                                             n_steps)
                        rnn_output, self.snew = lstm(input_sequence,
                                                     masks,
                                                     self.states_ph,
                                                     'lstm1',
                                                     n_hidden=n_lstm,
                                                     layer_norm=layer_norm)
                        latent = seq_to_batch(rnn_output)
                        lstm_layer_constructed = True
                    else:
                        assert isinstance(
                            layer, dict
                        ), "Error: the net_arch list can only contain ints and dicts"
                        if 'pi' in layer:
                            assert isinstance(
                                layer['pi'], list
                            ), "Error: net_arch[-1]['pi'] must contain a list of integers."
                            policy_only_layers = layer['pi']

                        if 'vf' in layer:
                            assert isinstance(
                                layer['vf'], list
                            ), "Error: net_arch[-1]['vf'] must contain a list of integers."
                            value_only_layers = layer['vf']
                        break  # From here on the network splits up in policy and value network

                # Build the non-shared part of the policy-network
                latent_policy = latent
                for idx, pi_layer_size in enumerate(policy_only_layers):
                    if pi_layer_size == "lstm":
                        raise NotImplementedError(
                            "LSTMs are only supported in the shared part of the policy network."
                        )
                    assert isinstance(
                        pi_layer_size, int
                    ), "Error: net_arch[-1]['pi'] must only contain integers."
                    latent_policy = act_fun(
                        linear(latent_policy,
                               "pi_fc{}".format(idx),
                               pi_layer_size,
                               init_scale=np.sqrt(2)))

                # Build the non-shared part of the value-network
                latent_value = latent
                for idx, vf_layer_size in enumerate(value_only_layers):
                    if vf_layer_size == "lstm":
                        raise NotImplementedError(
                            "LSTMs are only supported in the shared part of the value function "
                            "network.")
                    assert isinstance(
                        vf_layer_size, int
                    ), "Error: net_arch[-1]['vf'] must only contain integers."
                    latent_value = act_fun(
                        linear(latent_value,
                               "vf_fc{}".format(idx),
                               vf_layer_size,
                               init_scale=np.sqrt(2)))

                if not lstm_layer_constructed:
                    raise ValueError(
                        "The net_arch parameter must contain at least one occurrence of 'lstm'!"
                    )

                self._value_fn = linear(latent_value, 'vf', 1)
                # TODO: why not init_scale = 0.001 here like in the feedforward
                self._proba_distribution, self._policy, self.q_value = \
                    self.pdtype.proba_distribution_from_latent(latent_policy, latent_value)
        self._setup_init()