def _init_ner_model(self, session, ckpt_path): """Create ner Tagger model and initialize or load parameters in session.""" # initilize config config = ner_model.get_config(self.name) if config is None: print("WARNING: Input model name %s has no configuration..." % self.name) config.batch_size = 1 config.num_steps = 1 # iterator one token per time model_var_scope = get_model_var_scope(self.var_scope, self.name) print("NOTICE: Input NER Model Var Scope Name '%s'" % model_var_scope) # Check if self.model already exist if self.model is None: with tf.variable_scope(model_var_scope, reuse=tf.AUTO_REUSE): self.model = ner_model.NERTagger( is_training=True, config=config) # save object after is_training #else: # Model Graph Def already exist # print ("DEBUG: Model Def already exists") # update model parameters if len(glob.glob(ckpt_path + '.data*') ) > 0: # file exist with pattern: 'ner.ckpt.data*' print("NOTICE: Loading model parameters from %s" % ckpt_path) all_vars = tf.global_variables() model_vars = [ k for k in all_vars if model_var_scope in k.name.split("/") ] # e.g. ner_var_scope_zh tf.train.Saver(model_vars).restore(session, ckpt_path) else: print( "NOTICE: Model not found, Try to run method: deepnlp.download(module='ner', name='%s')" % self.name) print("NOTICE: Created with fresh parameters.") session.run(tf.global_variables_initializer())
def _init_ner_model(self, session, ckpt_path): """Create ner Tagger model and initialize or load parameters in session.""" # initilize config config = ner_model.get_config(self.lang) config.batch_size = 1 config.num_steps = 1 # iterator one token per time with tf.variable_scope("ner_var_scope"): model = ner_model.NERTagger(is_training=True, config=config) # save object after is_training if len(glob.glob(ckpt_path + '.data*')) > 0: # file exist with pattern: 'ner.ckpt.data*' print("Loading model parameters from %s" % ckpt_path) all_vars = tf.global_variables() model_vars = [k for k in all_vars if k.name.startswith("ner_var_scope")] tf.train.Saver(model_vars).restore(session, ckpt_path) else: print("Model not found, created with fresh parameters.") session.run(tf.global_variables_initializer()) return model