Example #1
0
    def init_sampling(self, hwf):
        # Unpack data props
        H, W, _ = hwf

        # Coordinates to sample from, list of H * W indices in form of (width, height), H * W * 2
        self.coords = torch.stack(
            meshgrid_xy(torch.arange(H), torch.arange(W)),
            dim=-1,
        ).reshape((-1, 2))
Example #2
0
 def __init__(self,
              data,
              num_random_rays=None,
              near=2,
              far=6,
              start=0,
              stop=-1,
              skip=None,
              skip_every=None,
              resolution=1.0,
              scale=1.0):
     """
     :param data: A loaded .sens file
     :param num_random_rays: Number of rays that should be in a batch. If None, a batch consists of the full image.
     :param near: Near plane for bounds.
     :param far: Far plane for bounds.
     :param start: Start index for images.
     :param stop: Stop index for images.
     :param skip: If any images should be skipped.
     :param skip_every: The inverse of skip.
     """
     self.scale = scale
     self.num_random_rays = num_random_rays
     self.data = data
     self.skip = skip
     self.skip_every = skip_every
     self.resolution = resolution
     if stop == -1:
         self.stop = len(self.data.frames)
     else:
         self.stop = stop
     if skip:
         self.data_len = math.ceil(self.stop / skip)
         skip_every = None
     elif skip_every:
         self.data_len = self.stop - math.ceil(self.stop / skip_every)
     else:
         self.data_len = len(data.frames)
     self.H, self.W = int(self.data.color_height * resolution), int(
         self.data.color_width * resolution)
     self.dummy_rays = dummy_rays_simple_radial(  # TODO: Implement other camera models
         self.H, self.W, self.data.intrinsic_color, self.resolution)
     if self.num_random_rays:
         self.pixels = torch.stack(
             meshgrid_xy(torch.arange(self.H), torch.arange(self.W)),
             dim=-1,
         ).reshape((-1, 2))
         self.ray_bounds = (torch.tensor(
             [near, far],
             dtype=torch.float32).view(1, 2).expand(self.num_random_rays,
                                                    2))
     else:
         self.ray_bounds = (torch.tensor(
             [near, far], dtype=torch.float32).view(1, 2).expand(
                 self.dummy_rays.shape[0] * self.dummy_rays.shape[1], 2))
Example #3
0
def dummy_rays_simple_radial(height: int, width: int, camera, resolution):
    f, cx, cy, k = camera[0], camera[1], camera[2], camera[0]
    f *= resolution
    cx *= resolution
    cy *= resolution
    ii, jj = meshgrid_xy(
        torch.arange(width, dtype=torch.float32),
        torch.arange(height, dtype=torch.float32),
    )

    directions = torch.stack(
        [
            (ii - cx) / f,
            (jj - cy) / f,
            torch.ones_like(ii),
        ],
        dim=-1,
    )

    # directions /= torch.norm(directions, dim=-1)[...,None]
    return directions
def torch_normal_map(depthmap,
                     focal,
                     weights=None,
                     clean=True,
                     central_difference=False):
    W, H = depthmap.shape
    #normals = torch.zeros((H,W,3), device=depthmap.device)
    cx = focal[2] * W
    cy = focal[3] * H
    fx = focal[0]
    fy = focal[1]
    ii, jj = meshgrid_xy(torch.arange(W, device=depthmap.device),
                         torch.arange(H, device=depthmap.device))
    points = torch.stack([
        ((ii - cx) * depthmap) / fx,
        -((jj - cy) * depthmap) / fy,
        depthmap,
    ],
                         dim=-1)
    difference = 2 if central_difference else 1
    dx = (points[difference:, :, :] - points[:-difference, :, :])
    dy = (points[:, difference:, :] - points[:, :-difference, :])
    normals = torch.cross(dy[:-difference, :, :], dx[:, :-difference, :], 2)
    normalize_factor = torch.sqrt(torch.sum(normals * normals, 2))
    normals[:, :, 0] /= normalize_factor
    normals[:, :, 1] /= normalize_factor
    normals[:, :, 2] /= normalize_factor
    normals = normals * 0.5 + 0.5

    if clean and weights is not None:  # Use volumetric rendering weights to clean up the normal map
        mask = weights.repeat(3, 1, 1).permute(1, 2, 0)
        mask = mask[:-difference, :-difference]
        where = torch.where(mask > 0.22)
        normals[where] = 1.0
        normals = (1 - mask) * normals + (mask) * torch.ones_like(normals)
    normals *= 255
    #plt.imshow(normals.cpu().numpy().astype('uint8'))
    #plt.show()
    return normals
Example #5
0
def cache_nerf_dataset(args):

    images, poses, render_poses, hwf = (
        None,
        None,
        None,
        None,
    )
    i_train, i_val, i_test = None, None, None

    if args.type == "blender":
        images, poses, render_poses, hwf, i_split = load_blender_data(
            args.datapath,
            half_res=args.blender_half_res,
            testskip=args.blender_stride)

        i_train, i_val, i_test = i_split
        H, W, focal = hwf
        H, W = int(H), int(W)
        hwf = [H, W, focal]
    elif args.type == "llff":
        images, poses, bds, render_poses, i_test = load_llff_data(
            args.datapath, factor=args.llff_downsample_factor)
        hwf = poses[0, :3, -1]
        poses = poses[:, :3, :4]
        if not isinstance(i_test, list):
            i_test = [i_test]
        if args.llffhold > 0:
            i_test = np.arange(images.shape[0])[::args.llffhold]
        i_val = i_test
        i_train = np.array([
            i for i in np.arange(images.shape[0])
            if (i not in i_test and i not in i_val)
        ])
        H, W, focal = hwf
        hwf = [int(H), int(W), focal]
        images = torch.from_numpy(images)
        poses = torch.from_numpy(poses)

    # Device on which to run.
    if torch.cuda.is_available():
        device = "cuda"
    else:
        device = "cpu"

    os.makedirs(os.path.join(args.savedir, "train"), exist_ok=True)
    os.makedirs(os.path.join(args.savedir, "val"), exist_ok=True)
    os.makedirs(os.path.join(args.savedir, "test"), exist_ok=True)
    np.random.seed(args.randomseed)

    for img_idx in tqdm(i_train):
        for j in range(args.num_variations):
            img_target = images[img_idx].to(device)
            pose_target = poses[img_idx, :3, :4].to(device)
            ray_origins, ray_directions = get_ray_bundle(
                H, W, focal, pose_target)
            coords = torch.stack(
                meshgrid_xy(
                    torch.arange(H).to(device),
                    torch.arange(W).to(device)),
                dim=-1,
            )
            coords = coords.reshape((-1, 2))
            target_s = None
            save_path = None
            if args.sample_all is False:
                select_inds = np.random.choice(coords.shape[0],
                                               size=(args.num_random_rays),
                                               replace=False)
                select_inds = coords[select_inds]
                ray_origins = ray_origins[select_inds[:, 0], select_inds[:,
                                                                         1], :]
                ray_directions = ray_directions[select_inds[:, 0],
                                                select_inds[:, 1], :]
                target_s = img_target[select_inds[:, 0], select_inds[:, 1], :]
                save_path = os.path.join(
                    args.savedir,
                    "train",
                    str(img_idx).zfill(4),
                    str(j).zfill(4),
                    ".data",
                )
            else:
                target_s = img_target
                save_path = os.path.join(args.savedir, "train",
                                         str(img_idx).zfill(4) + ".data")

            batch_rays = torch.stack([ray_origins, ray_directions], dim=0)

            cache_dict = {
                "height": H,
                "width": W,
                "focal_length": focal,
                "ray_bundle": batch_rays.detach().cpu(),
                "target": target_s.detach().cpu(),
            }

            save_path = os.path.join(args.savedir, "train",
                                     str(img_idx).zfill(4) + ".data")
            torch.save(cache_dict, save_path)

            if args.sample_all is True:
                break

    for img_idx in tqdm(i_val):
        img_target = images[img_idx].to(device)
        pose_target = poses[img_idx, :3, :4].to(device)
        ray_origins, ray_directions = get_ray_bundle(H, W, focal, pose_target)

        cache_dict = {
            "height": H,
            "width": W,
            "focal_length": focal,
            "ray_origins": ray_origins.detach().cpu(),
            "ray_directions": ray_directions.detach().cpu(),
            "target": img_target.detach().cpu(),
        }

        save_path = os.path.join(args.savedir, "val",
                                 str(img_idx).zfill(4) + ".data")
        torch.save(cache_dict, save_path)
Example #6
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument("--config",
                        type=str,
                        required=True,
                        help="Path to (.yml) config file.")
    parser.add_argument(
        "--load-checkpoint",
        type=str,
        default="",
        help="Path to load saved checkpoint from.",
    )
    configargs = parser.parse_args()

    # Read config file.
    cfg = None
    with open(configargs.config, "r") as f:
        cfg_dict = yaml.load(f, Loader=yaml.FullLoader)
        cfg = CfgNode(cfg_dict)

    # # (Optional:) enable this to track autograd issues when debugging
    # torch.autograd.set_detect_anomaly(True)

    # If a pre-cached dataset is available, skip the dataloader.
    USE_CACHED_DATASET = False
    train_paths, validation_paths = None, None
    images, poses, render_poses, hwf, i_split = None, None, None, None, None
    H, W, focal, i_train, i_val, i_test = None, None, None, None, None, None
    if hasattr(cfg.dataset, "cachedir") and os.path.exists(
            cfg.dataset.cachedir):
        train_paths = glob.glob(
            os.path.join(cfg.dataset.cachedir, "train", "*.data"))
        validation_paths = glob.glob(
            os.path.join(cfg.dataset.cachedir, "val", "*.data"))
        USE_CACHED_DATASET = True
    else:
        # Load dataset
        images, poses, render_poses, hwf = None, None, None, None
        if cfg.dataset.type.lower() == "blender":
            images, poses, render_poses, hwf, i_split = load_blender_data(
                cfg.dataset.basedir,
                half_res=cfg.dataset.half_res,
                testskip=cfg.dataset.testskip,
            )
            i_train, i_val, i_test = i_split
            H, W, focal = hwf
            H, W = int(H), int(W)
            hwf = [H, W, focal]
            if cfg.nerf.train.white_background:
                images = images[..., :3] * images[..., -1:] + (
                    1. - images[..., -1:])
        elif cfg.dataset.type.lower() == "llff":
            images, poses, bds, render_poses, i_test = load_llff_data(
                cfg.dataset.basedir, factor=cfg.dataset.downsample_factor)
            hwf = poses[0, :3, -1]
            poses = poses[:, :3, :4]
            if not isinstance(i_test, list):
                i_test = [i_test]
            if cfg.dataset.llffhold > 0:
                i_test = np.arange(images.shape[0])[::cfg.dataset.llffhold]
            i_val = i_test
            i_train = np.array([
                i for i in np.arange(images.shape[0])
                if (i not in i_test and i not in i_val)
            ])
            H, W, focal = hwf
            H, W = int(H), int(W)
            hwf = [H, W, focal]
            images = torch.from_numpy(images)
            poses = torch.from_numpy(poses)

    # Seed experiment for repeatability
    seed = cfg.experiment.randomseed
    np.random.seed(seed)
    torch.manual_seed(seed)

    # Device on which to run.
    if torch.cuda.is_available():
        device = "cuda"
    else:
        device = "cpu"

    encode_position_fn = get_embedding_function(
        num_encoding_functions=cfg.models.coarse.num_encoding_fn_xyz,
        include_input=cfg.models.coarse.include_input_xyz,
        log_sampling=cfg.models.coarse.log_sampling_xyz,
    )

    encode_direction_fn = None
    if cfg.models.coarse.use_viewdirs:
        encode_direction_fn = get_embedding_function(
            num_encoding_functions=cfg.models.coarse.num_encoding_fn_dir,
            include_input=cfg.models.coarse.include_input_dir,
            log_sampling=cfg.models.coarse.log_sampling_dir,
        )

    # Initialize a coarse-resolution model.
    model_coarse = getattr(models, cfg.models.coarse.type)(
        num_encoding_fn_xyz=cfg.models.coarse.num_encoding_fn_xyz,
        num_encoding_fn_dir=cfg.models.coarse.num_encoding_fn_dir,
        include_input_xyz=cfg.models.coarse.include_input_xyz,
        include_input_dir=cfg.models.coarse.include_input_dir,
        use_viewdirs=cfg.models.coarse.use_viewdirs,
    )
    model_coarse.to(device)
    # If a fine-resolution model is specified, initialize it.
    model_fine = None
    if hasattr(cfg.models, "fine"):
        model_fine = getattr(models, cfg.models.fine.type)(
            num_encoding_fn_xyz=cfg.models.fine.num_encoding_fn_xyz,
            num_encoding_fn_dir=cfg.models.fine.num_encoding_fn_dir,
            include_input_xyz=cfg.models.fine.include_input_xyz,
            include_input_dir=cfg.models.fine.include_input_dir,
            use_viewdirs=cfg.models.fine.use_viewdirs,
        )
        model_fine.to(device)

    # Initialize optimizer.
    trainable_parameters = list(model_coarse.parameters())
    if model_fine is not None:
        trainable_parameters += list(model_fine.parameters())
    optimizer = getattr(torch.optim, cfg.optimizer.type)(trainable_parameters,
                                                         lr=cfg.optimizer.lr)

    # Setup logging.
    logdir = os.path.join(cfg.experiment.logdir, cfg.experiment.id)
    os.makedirs(logdir, exist_ok=True)
    writer = SummaryWriter(logdir)
    # Write out config parameters.
    with open(os.path.join(logdir, "config.yml"), "w") as f:
        f.write(cfg.dump())  # cfg, f, default_flow_style=False)

    # By default, start at iteration 0 (unless a checkpoint is specified).
    start_iter = 0

    # Load an existing checkpoint, if a path is specified.
    if os.path.exists(configargs.load_checkpoint):
        checkpoint = torch.load(configargs.load_checkpoint)
        model_coarse.load_state_dict(checkpoint["model_coarse_state_dict"])
        if checkpoint["model_fine_state_dict"]:
            model_fine.load_state_dict(checkpoint["model_fine_state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        start_iter = checkpoint["iter"]

    # # TODO: Prepare raybatch tensor if batching random rays

    for i in trange(start_iter, cfg.experiment.train_iters):

        model_coarse.train()
        if model_fine:
            model_coarse.train()

        rgb_coarse, rgb_fine = None, None
        target_ray_values = None
        if USE_CACHED_DATASET:
            datafile = np.random.choice(train_paths)
            cache_dict = torch.load(datafile)
            ray_bundle = cache_dict["ray_bundle"].to(device)
            ray_origins, ray_directions = (
                ray_bundle[0].reshape((-1, 3)),
                ray_bundle[1].reshape((-1, 3)),
            )
            target_ray_values = cache_dict["target"][..., :3].reshape((-1, 3))
            select_inds = np.random.choice(
                ray_origins.shape[0],
                size=(cfg.nerf.train.num_random_rays),
                replace=False,
            )
            ray_origins, ray_directions = (
                ray_origins[select_inds],
                ray_directions[select_inds],
            )
            target_ray_values = target_ray_values[select_inds].to(device)
            # ray_bundle = torch.stack([ray_origins, ray_directions], dim=0).to(device)

            rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
                cache_dict["height"],
                cache_dict["width"],
                cache_dict["focal_length"],
                model_coarse,
                model_fine,
                ray_origins,
                ray_directions,
                cfg,
                mode="train",
                encode_position_fn=encode_position_fn,
                encode_direction_fn=encode_direction_fn,
            )
        else:
            img_idx = np.random.choice(i_train)
            img_target = images[img_idx].to(device)
            pose_target = poses[img_idx, :3, :4].to(device)
            ray_origins, ray_directions = get_ray_bundle(
                H, W, focal, pose_target)
            coords = torch.stack(
                meshgrid_xy(
                    torch.arange(H).to(device),
                    torch.arange(W).to(device)),
                dim=-1,
            )
            coords = coords.reshape((-1, 2))
            select_inds = np.random.choice(
                coords.shape[0],
                size=(cfg.nerf.train.num_random_rays),
                replace=False)
            select_inds = coords[select_inds]
            ray_origins = ray_origins[select_inds[:, 0], select_inds[:, 1], :]
            ray_directions = ray_directions[select_inds[:, 0],
                                            select_inds[:, 1], :]
            # batch_rays = torch.stack([ray_origins, ray_directions], dim=0)
            target_s = img_target[select_inds[:, 0], select_inds[:, 1], :]

            then = time.time()
            rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
                H,
                W,
                focal,
                model_coarse,
                model_fine,
                ray_origins,
                ray_directions,
                cfg,
                mode="train",
                encode_position_fn=encode_position_fn,
                encode_direction_fn=encode_direction_fn,
            )
            target_ray_values = target_s

        coarse_loss = torch.nn.functional.mse_loss(rgb_coarse[..., :3],
                                                   target_ray_values[..., :3])
        fine_loss = None
        if rgb_fine is not None:
            fine_loss = torch.nn.functional.mse_loss(
                rgb_fine[..., :3], target_ray_values[..., :3])
        # loss = torch.nn.functional.mse_loss(rgb_pred[..., :3], target_s[..., :3])
        loss = coarse_loss + (fine_loss if fine_loss is not None else 0.0)
        loss.backward()
        psnr = mse2psnr(loss.item())
        optimizer.step()
        optimizer.zero_grad()

        # Learning rate updates
        num_decay_steps = cfg.scheduler.lr_decay * 1000
        lr_new = cfg.optimizer.lr * (cfg.scheduler.lr_decay_factor
                                     **(i / num_decay_steps))
        for param_group in optimizer.param_groups:
            param_group["lr"] = lr_new

        if i % cfg.experiment.print_every == 0 or i == cfg.experiment.train_iters - 1:
            tqdm.write("[TRAIN] Iter: " + str(i) + " Loss: " +
                       str(loss.item()) + " PSNR: " + str(psnr))
        writer.add_scalar("train/loss", loss.item(), i)
        writer.add_scalar("train/coarse_loss", coarse_loss.item(), i)
        if rgb_fine is not None:
            writer.add_scalar("train/fine_loss", fine_loss.item(), i)
        writer.add_scalar("train/psnr", psnr, i)

        # Validation
        if (i % cfg.experiment.validate_every == 0
                or i == cfg.experiment.train_iters - 1):
            tqdm.write("[VAL] =======> Iter: " + str(i))
            model_coarse.eval()
            if model_fine:
                model_coarse.eval()

            start = time.time()
            with torch.no_grad():
                rgb_coarse, rgb_fine = None, None
                target_ray_values = None
                if USE_CACHED_DATASET:
                    datafile = np.random.choice(validation_paths)
                    cache_dict = torch.load(datafile)
                    rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
                        cache_dict["height"],
                        cache_dict["width"],
                        cache_dict["focal_length"],
                        model_coarse,
                        model_fine,
                        cache_dict["ray_origins"].to(device),
                        cache_dict["ray_directions"].to(device),
                        cfg,
                        mode="validation",
                        encode_position_fn=encode_position_fn,
                        encode_direction_fn=encode_direction_fn,
                    )
                    target_ray_values = cache_dict["target"].to(device)
                else:
                    img_idx = np.random.choice(i_val)
                    img_target = images[img_idx].to(device)
                    pose_target = poses[img_idx, :3, :4].to(device)
                    ray_origins, ray_directions = get_ray_bundle(
                        H, W, focal, pose_target)
                    rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
                        H,
                        W,
                        focal,
                        model_coarse,
                        model_fine,
                        ray_origins,
                        ray_directions,
                        cfg,
                        mode="validation",
                        encode_position_fn=encode_position_fn,
                        encode_direction_fn=encode_direction_fn,
                    )
                    target_ray_values = img_target
                coarse_loss = img2mse(rgb_coarse[..., :3],
                                      target_ray_values[..., :3])
                fine_loss = 0.0
                if rgb_fine is not None:
                    fine_loss = img2mse(rgb_fine[..., :3],
                                        target_ray_values[..., :3])
                loss = coarse_loss + fine_loss
                psnr = mse2psnr(loss.item())
                writer.add_scalar("validation/loss", loss.item(), i)
                writer.add_scalar("validation/coarse_loss", coarse_loss.item(),
                                  i)
                writer.add_scalar("validataion/psnr", psnr, i)
                writer.add_image("validation/rgb_coarse",
                                 cast_to_image(rgb_coarse[..., :3]), i)
                if rgb_fine is not None:
                    writer.add_image("validation/rgb_fine",
                                     cast_to_image(rgb_fine[..., :3]), i)
                    writer.add_scalar("validation/fine_loss", fine_loss.item(),
                                      i)
                writer.add_image(
                    "validation/img_target",
                    cast_to_image(target_ray_values[..., :3]),
                    i,
                )
                tqdm.write("Validation loss: " + str(loss.item()) +
                           " Validation PSNR: " + str(psnr) + " Time: " +
                           str(time.time() - start))

        if i % cfg.experiment.save_every == 0 or i == cfg.experiment.train_iters - 1:
            checkpoint_dict = {
                "iter":
                i,
                "model_coarse_state_dict":
                model_coarse.state_dict(),
                "model_fine_state_dict":
                None if not model_fine else model_fine.state_dict(),
                "optimizer_state_dict":
                optimizer.state_dict(),
                "loss":
                loss,
                "psnr":
                psnr,
            }
            torch.save(
                checkpoint_dict,
                os.path.join(logdir, "checkpoint" + str(i).zfill(5) + ".ckpt"),
            )
            tqdm.write("================== Saved Checkpoint =================")

    print("Done!")
Example #7
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument("--config",
                        type=str,
                        required=True,
                        help="Path to (.yml) config file.")
    parser.add_argument(
        "--load-checkpoint",
        type=str,
        default="",
        help="Path to load saved checkpoint from.",
    )
    configargs = parser.parse_args()

    # Read config file.
    cfg = None
    with open(configargs.config, "r") as f:
        cfg_dict = yaml.load(f, Loader=yaml.FullLoader)
        cfg = CfgNode(cfg_dict)

    # # (Optional:) enable this to track autograd issues when debugging
    # torch.autograd.set_detect_anomaly(True)

    # If a pre-cached dataset is available, skip the dataloader.
    USE_CACHED_DATASET = False
    train_paths, validation_paths = None, None
    images, poses, render_poses, hwf, i_split, expressions = None, None, None, None, None, None
    H, W, focal, i_train, i_val, i_test = None, None, None, None, None, None
    if hasattr(cfg.dataset, "cachedir") and os.path.exists(
            cfg.dataset.cachedir):
        train_paths = glob.glob(
            os.path.join(cfg.dataset.cachedir, "train", "*.data"))
        validation_paths = glob.glob(
            os.path.join(cfg.dataset.cachedir, "val", "*.data"))
        USE_CACHED_DATASET = True
    else:
        # Load dataset
        images, poses, render_poses, hwf, expressions = None, None, None, None, None
        if cfg.dataset.type.lower() == "blender":
            images, poses, render_poses, hwf, i_split, expressions, _, bboxs = load_flame_data(
                cfg.dataset.basedir,
                half_res=cfg.dataset.half_res,
                testskip=cfg.dataset.testskip,
            )
            i_train, i_val, i_test = i_split
            H, W, focal = hwf
            H, W = int(H), int(W)
            hwf = [H, W, focal]
            if cfg.nerf.train.white_background:
                images = images[..., :3] * images[..., -1:] + (
                    1.0 - images[..., -1:])
    print("done loading data")
    # Seed experiment for repeatability
    seed = cfg.experiment.randomseed
    np.random.seed(seed)
    torch.manual_seed(seed)

    # Device on which to run.
    if torch.cuda.is_available():
        device = "cuda"  #+ ":" + str(cfg.experiment.device)
    else:
        device = "cpu"

    encode_position_fn = get_embedding_function(
        num_encoding_functions=cfg.models.coarse.num_encoding_fn_xyz,
        include_input=cfg.models.coarse.include_input_xyz,
        log_sampling=cfg.models.coarse.log_sampling_xyz,
    )

    encode_direction_fn = None
    if cfg.models.coarse.use_viewdirs:
        encode_direction_fn = get_embedding_function(
            num_encoding_functions=cfg.models.coarse.num_encoding_fn_dir,
            include_input=cfg.models.coarse.include_input_dir,
            log_sampling=cfg.models.coarse.log_sampling_dir,
        )

    # Initialize a coarse-resolution model.
    model_coarse = getattr(models, cfg.models.coarse.type)(
        num_encoding_fn_xyz=cfg.models.coarse.num_encoding_fn_xyz,
        num_encoding_fn_dir=cfg.models.coarse.num_encoding_fn_dir,
        include_input_xyz=cfg.models.coarse.include_input_xyz,
        include_input_dir=cfg.models.coarse.include_input_dir,
        use_viewdirs=cfg.models.coarse.use_viewdirs,
        num_layers=cfg.models.coarse.num_layers,
        hidden_size=cfg.models.coarse.hidden_size,
        include_expression=True)
    model_coarse.to(device)
    # If a fine-resolution model is specified, initialize it.
    model_fine = None
    if hasattr(cfg.models, "fine"):
        model_fine = getattr(models, cfg.models.fine.type)(
            num_encoding_fn_xyz=cfg.models.fine.num_encoding_fn_xyz,
            num_encoding_fn_dir=cfg.models.fine.num_encoding_fn_dir,
            include_input_xyz=cfg.models.fine.include_input_xyz,
            include_input_dir=cfg.models.fine.include_input_dir,
            use_viewdirs=cfg.models.fine.use_viewdirs,
            num_layers=cfg.models.coarse.num_layers,
            hidden_size=cfg.models.coarse.hidden_size,
            include_expression=True)
        model_fine.to(device)

    ###################################
    ###################################
    train_background = False
    supervised_train_background = False
    blur_background = False

    train_latent_codes = True
    disable_expressions = False  # True to disable expressions
    disable_latent_codes = False  # True to disable latent codes
    fixed_background = True  # Do False to disable BG
    regularize_latent_codes = True  # True to add latent code LOSS, false for most experiments
    ###################################
    ###################################

    supervised_train_background = train_background and supervised_train_background
    # Avg background
    #images[i_train]
    if train_background:
        with torch.no_grad():
            avg_img = torch.mean(images[i_train], axis=0)
            # Blur Background:
            if blur_background:
                avg_img = avg_img.permute(2, 0, 1)
                avg_img = avg_img.unsqueeze(0)
                smoother = GaussianSmoothing(channels=3,
                                             kernel_size=11,
                                             sigma=11)
                print("smoothed background initialization. shape ",
                      avg_img.shape)
                avg_img = smoother(avg_img).squeeze(0).permute(1, 2, 0)
            #avg_img = torch.zeros(H,W,3)
            #avg_img = torch.rand(H,W,3)
            #avg_img = 0.5*(torch.rand(H,W,3) + torch.mean(images[i_train],axis=0))
            background = torch.tensor(avg_img, device=device)
        background.requires_grad = True

    if fixed_background:  # load GT background
        print("loading GT background to condition on")
        from PIL import Image
        background = Image.open(
            os.path.join(cfg.dataset.basedir, 'bg', '00050.png'))
        background.thumbnail((H, W))
        background = torch.from_numpy(np.array(background).astype(
            np.float32)).to(device)
        background = background / 255
        print("bg shape", background.shape)
        print("should be ", images[i_train][0].shape)
        assert background.shape == images[i_train][0].shape
    else:
        background = None

    # Initialize optimizer.
    trainable_parameters = list(model_coarse.parameters())
    if model_fine is not None:
        trainable_parameters += list(model_fine.parameters())
    if train_background:
        #background.requires_grad = True
        #trainable_parameters.append(background) # add it later when init optimizer for different lr
        print("background.is_leaf ", background.is_leaf, background.device)

    if train_latent_codes:
        latent_codes = torch.zeros(len(i_train), 32, device=device)
        print("initialized latent codes with shape %d X %d" %
              (latent_codes.shape[0], latent_codes.shape[1]))
        if not disable_latent_codes:
            trainable_parameters.append(latent_codes)
            latent_codes.requires_grad = True

    if train_background:
        optimizer = getattr(torch.optim,
                            cfg.optimizer.type)([{
                                'params': trainable_parameters
                            }, {
                                'params': background,
                                'lr': cfg.optimizer.lr
                            }],
                                                lr=cfg.optimizer.lr)
    else:
        optimizer = getattr(torch.optim, cfg.optimizer.type)(
            [{
                'params': trainable_parameters
            }, {
                'params': background,
                'lr': cfg.optimizer.lr
            }],  # this is obsolete but need for continuing training
            lr=cfg.optimizer.lr)
    # Setup logging.
    logdir = os.path.join(cfg.experiment.logdir, cfg.experiment.id)
    os.makedirs(logdir, exist_ok=True)
    writer = SummaryWriter(logdir)
    # Write out config parameters.
    with open(os.path.join(logdir, "config.yml"), "w") as f:
        f.write(cfg.dump())  # cfg, f, default_flow_style=False)

    # By default, start at iteration 0 (unless a checkpoint is specified).
    start_iter = 0

    # Load an existing checkpoint, if a path is specified.
    if os.path.exists(configargs.load_checkpoint):
        checkpoint = torch.load(configargs.load_checkpoint)
        model_coarse.load_state_dict(checkpoint["model_coarse_state_dict"])
        if checkpoint["model_fine_state_dict"]:
            model_fine.load_state_dict(checkpoint["model_fine_state_dict"])
        if checkpoint["background"] is not None:
            print("loaded bg from checkpoint")
            background = torch.nn.Parameter(
                checkpoint['background'].to(device))
        if checkpoint["latent_codes"] is not None:
            print("loaded latent codes from checkpoint")
            latent_codes = torch.nn.Parameter(
                checkpoint['latent_codes'].to(device))

        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        start_iter = checkpoint["iter"]

    # # TODO: Prepare raybatch tensor if batching random rays

    # Prepare importance sampling maps
    ray_importance_sampling_maps = []
    p = 0.9
    print("computing boundix boxes probability maps")
    for i in i_train:
        bbox = bboxs[i]
        probs = np.zeros((H, W))
        probs.fill(1 - p)
        probs[bbox[0]:bbox[1], bbox[2]:bbox[3]] = p
        probs = (1 / probs.sum()) * probs
        ray_importance_sampling_maps.append(probs.reshape(-1))

    print("Starting loop")
    for i in trange(start_iter, cfg.experiment.train_iters):

        model_coarse.train()
        if model_fine:
            model_coarse.train()

        rgb_coarse, rgb_fine = None, None
        target_ray_values = None
        background_ray_values = None
        if USE_CACHED_DATASET:
            datafile = np.random.choice(train_paths)
            cache_dict = torch.load(datafile)
            ray_bundle = cache_dict["ray_bundle"].to(device)
            ray_origins, ray_directions = (
                ray_bundle[0].reshape((-1, 3)),
                ray_bundle[1].reshape((-1, 3)),
            )
            target_ray_values = cache_dict["target"][..., :3].reshape((-1, 3))
            select_inds = np.random.choice(
                ray_origins.shape[0],
                size=(cfg.nerf.train.num_random_rays),
                replace=False,
            )
            ray_origins, ray_directions = (
                ray_origins[select_inds],
                ray_directions[select_inds],
            )
            target_ray_values = target_ray_values[select_inds].to(device)
            #target_ray_values = target_ray_values[select_inds].to(device)
            # ray_bundle = torch.stack([ray_origins, ray_directions], dim=0).to(device)

            rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
                cache_dict["height"],
                cache_dict["width"],
                cache_dict["focal_length"],
                model_coarse,
                model_fine,
                ray_origins,
                ray_directions,
                cfg,
                mode="train",
                encode_position_fn=encode_position_fn,
                encode_direction_fn=encode_direction_fn,
                expressions=expressions)
        else:
            img_idx = np.random.choice(i_train)
            img_target = images[img_idx].to(device)
            pose_target = poses[img_idx, :3, :4].to(device)
            if not disable_expressions:
                expression_target = expressions[img_idx].to(device)  # vector
            else:  # zero expr
                expression_target = torch.zeros(76, device=device)
            #bbox = bboxs[img_idx]
            if not disable_latent_codes:
                latent_code = latent_codes[img_idx].to(
                    device) if train_latent_codes else None
            else:
                latent_codes = torch.zeros(32, device=device)
            #latent_code = torch.zeros(32).to(device)
            ray_origins, ray_directions = get_ray_bundle(
                H, W, focal, pose_target)
            coords = torch.stack(
                meshgrid_xy(
                    torch.arange(H).to(device),
                    torch.arange(W).to(device)),
                dim=-1,
            )

            # Only randomly choose rays that are in the bounding box !
            # coords = torch.stack(
            #     meshgrid_xy(torch.arange(bbox[0],bbox[1]).to(device), torch.arange(bbox[2],bbox[3]).to(device)),
            #     dim=-1,
            # )

            coords = coords.reshape((-1, 2))
            # select_inds = np.random.choice(
            #     coords.shape[0], size=(cfg.nerf.train.num_random_rays), replace=False
            # )

            # Use importance sampling to sample mainly in the bbox with prob p
            select_inds = np.random.choice(
                coords.shape[0],
                size=(cfg.nerf.train.num_random_rays),
                replace=False,
                p=ray_importance_sampling_maps[img_idx])

            select_inds = coords[select_inds]
            ray_origins = ray_origins[select_inds[:, 0], select_inds[:, 1], :]
            ray_directions = ray_directions[select_inds[:, 0],
                                            select_inds[:, 1], :]
            #dump_rays(ray_origins, ray_directions)

            # batch_rays = torch.stack([ray_origins, ray_directions], dim=0)
            target_s = img_target[select_inds[:, 0], select_inds[:, 1], :]
            background_ray_values = background[select_inds[:, 0],
                                               select_inds[:, 1], :] if (
                                                   train_background or
                                                   fixed_background) else None
            #if i<10000:
            #   background_ray_values = None
            #background_ray_values = None
            then = time.time()
            rgb_coarse, _, _, rgb_fine, _, _, weights = run_one_iter_of_nerf(
                H,
                W,
                focal,
                model_coarse,
                model_fine,
                ray_origins,
                ray_directions,
                cfg,
                mode="train",
                encode_position_fn=encode_position_fn,
                encode_direction_fn=encode_direction_fn,
                expressions=expression_target,
                background_prior=background_ray_values,
                latent_code=latent_code if not disable_latent_codes else
                torch.zeros(32, device=device))
            target_ray_values = target_s

        coarse_loss = torch.nn.functional.mse_loss(rgb_coarse[..., :3],
                                                   target_ray_values[..., :3])
        fine_loss = None
        if rgb_fine is not None:
            fine_loss = torch.nn.functional.mse_loss(
                rgb_fine[..., :3], target_ray_values[..., :3])
        # loss = torch.nn.functional.mse_loss(rgb_pred[..., :3], target_s[..., :3])
        loss = 0.0
        # if fine_loss is not None:
        #     loss = fine_loss
        # else:
        #     loss = coarse_loss

        latent_code_loss = torch.zeros(1, device=device)
        if train_latent_codes and not disable_latent_codes:
            latent_code_loss = torch.norm(latent_code) * 0.0005
            #latent_code_loss = torch.zeros(1)

        background_loss = torch.zeros(1, device=device)
        if supervised_train_background:
            background_loss = torch.nn.functional.mse_loss(
                background_ray_values[..., :3],
                target_ray_values[..., :3],
                reduction='none').sum(1)
            background_loss = torch.mean(background_loss * weights) * 0.001

        loss = coarse_loss + (fine_loss if fine_loss is not None else 0.0)
        psnr = mse2psnr(loss.item())

        #loss_total = loss #+ (latent_code_loss if latent_code_loss is not None else 0.0)
        loss = loss + (latent_code_loss *
                       10 if regularize_latent_codes else 0.0)
        loss_total = loss + (background_loss if supervised_train_background
                             is not None else 0.0)
        #loss.backward()
        loss_total.backward()
        #psnr = mse2psnr(loss.item())
        optimizer.step()
        optimizer.zero_grad()

        # Learning rate updates
        num_decay_steps = cfg.scheduler.lr_decay * 1000
        lr_new = cfg.optimizer.lr * (cfg.scheduler.lr_decay_factor
                                     **(i / num_decay_steps))
        for param_group in optimizer.param_groups:
            param_group["lr"] = lr_new

        if i % cfg.experiment.print_every == 0 or i == cfg.experiment.train_iters - 1:
            tqdm.write("[TRAIN] Iter: " + str(i) + " Loss: " +
                       str(loss.item()) + " BG Loss: " +
                       str(background_loss.item()) + " PSNR: " + str(psnr) +
                       " LatentReg: " + str(latent_code_loss.item()))
        #writer.add_scalar("train/loss", loss.item(), i)
        if train_latent_codes:
            writer.add_scalar("train/code_loss", latent_code_loss.item(), i)
        if supervised_train_background:
            writer.add_scalar("train/bg_loss", background_loss.item(), i)

        writer.add_scalar("train/coarse_loss", coarse_loss.item(), i)
        if rgb_fine is not None:
            writer.add_scalar("train/fine_loss", fine_loss.item(), i)
        writer.add_scalar("train/psnr", psnr, i)

        # Validation
        if (i % cfg.experiment.validate_every == 0
                or i == cfg.experiment.train_iters - 1 and False):
            #torch.cuda.empty_cache()
            tqdm.write("[VAL] =======> Iter: " + str(i))
            model_coarse.eval()
            if model_fine:
                model_coarse.eval()

            start = time.time()
            with torch.no_grad():
                rgb_coarse, rgb_fine = None, None
                target_ray_values = None
                if USE_CACHED_DATASET:
                    datafile = np.random.choice(validation_paths)
                    cache_dict = torch.load(datafile)
                    rgb_coarse, _, _, rgb_fine, _, weights = run_one_iter_of_nerf(
                        cache_dict["height"],
                        cache_dict["width"],
                        cache_dict["focal_length"],
                        model_coarse,
                        model_fine,
                        cache_dict["ray_origins"].to(device),
                        cache_dict["ray_directions"].to(device),
                        cfg,
                        mode="validation",
                        encode_position_fn=encode_position_fn,
                        encode_direction_fn=encode_direction_fn,
                        expressions=expression_target,
                        latent_code=torch.zeros(32, device=device))
                    target_ray_values = cache_dict["target"].to(device)
                else:
                    # Do all validation set...
                    loss = 0
                    for img_idx in i_val[:2]:
                        img_target = images[img_idx].to(device)
                        #tqdm.set_description('val im %d' % img_idx)
                        #tqdm.refresh()  # to show immediately the update

                        # # save val image for debug ### DEBUG ####
                        # #GT = target_ray_values[..., :3]
                        # import PIL.Image
                        # #img = GT.permute(2, 0, 1)
                        # # Conver to PIL Image and then np.array (output shape: (H, W, 3))
                        # #im_numpy = img_target.detach().cpu().numpy()
                        # #im_numpy = np.array(torchvision.transforms.ToPILImage()(img_target.detach().cpu()))
                        #
                        # #                   im = PIL.Image.fromarray(im_numpy)
                        # im = img_target
                        # im = im.permute(2, 0, 1)
                        # img = np.array(torchvision.transforms.ToPILImage()(im.detach().cpu()))
                        # im = PIL.Image.fromarray(img)
                        # im.save('val_im_target_debug.png')
                        # ### DEBUG #### END

                        pose_target = poses[img_idx, :3, :4].to(device)
                        ray_origins, ray_directions = get_ray_bundle(
                            H, W, focal, pose_target)
                        rgb_coarse, _, _, rgb_fine, _, _, weights = run_one_iter_of_nerf(
                            H,
                            W,
                            focal,
                            model_coarse,
                            model_fine,
                            ray_origins,
                            ray_directions,
                            cfg,
                            mode="validation",
                            encode_position_fn=encode_position_fn,
                            encode_direction_fn=encode_direction_fn,
                            expressions=expression_target,
                            background_prior=background.view(-1, 3) if
                            (train_background or fixed_background) else None,
                            latent_code=torch.zeros(32).to(device)
                            if train_latent_codes or disable_latent_codes else
                            None,
                        )
                        #print("did one val")
                        target_ray_values = img_target
                        coarse_loss = img2mse(rgb_coarse[..., :3],
                                              target_ray_values[..., :3])
                        curr_loss, curr_fine_loss = 0.0, 0.0
                        if rgb_fine is not None:
                            curr_fine_loss = img2mse(
                                rgb_fine[..., :3], target_ray_values[..., :3])
                            curr_loss = curr_fine_loss
                        else:
                            curr_loss = coarse_loss
                        loss += curr_loss + curr_fine_loss

                loss /= len(i_val)
                psnr = mse2psnr(loss.item())
                writer.add_scalar("validation/loss", loss.item(), i)
                writer.add_scalar("validation/coarse_loss", coarse_loss.item(),
                                  i)
                writer.add_scalar("validation/psnr", psnr, i)
                writer.add_image("validation/rgb_coarse",
                                 cast_to_image(rgb_coarse[..., :3]), i)
                if rgb_fine is not None:
                    writer.add_image("validation/rgb_fine",
                                     cast_to_image(rgb_fine[..., :3]), i)
                    writer.add_scalar("validation/fine_loss", fine_loss.item(),
                                      i)

                writer.add_image(
                    "validation/img_target",
                    cast_to_image(target_ray_values[..., :3]),
                    i,
                )
                if train_background or fixed_background:
                    writer.add_image("validation/background",
                                     cast_to_image(background[..., :3]), i)
                    writer.add_image("validation/weights",
                                     (weights.detach().cpu().numpy()),
                                     i,
                                     dataformats='HW')
                tqdm.write("Validation loss: " + str(loss.item()) +
                           " Validation PSNR: " + str(psnr) + " Time: " +
                           str(time.time() - start))

        #gpu_profile(frame=sys._getframe(), event='line', arg=None)

        if i % cfg.experiment.save_every == 0 or i == cfg.experiment.train_iters - 1:
            checkpoint_dict = {
                "iter":
                i,
                "model_coarse_state_dict":
                model_coarse.state_dict(),
                "model_fine_state_dict":
                None if not model_fine else model_fine.state_dict(),
                "optimizer_state_dict":
                optimizer.state_dict(),
                "loss":
                loss,
                "psnr":
                psnr,
                "background":
                None if not (train_background or fixed_background) else
                background.data,
                "latent_codes":
                None if not train_latent_codes else latent_codes.data
            }
            torch.save(
                checkpoint_dict,
                os.path.join(logdir, "checkpoint" + str(i).zfill(5) + ".ckpt"),
            )
            tqdm.write("================== Saved Checkpoint =================")

    print("Done!")
Example #8
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument("--config",
                        type=str,
                        required=True,
                        help="Path to (.yml) config file.")
    parser.add_argument(
        "--load-checkpoint",
        type=str,
        default="",
        help="Path to load saved checkpoint from.",
    )
    configargs = parser.parse_args()

    # Read config file.
    with open(configargs.config, "r") as f:
        cfg_dict = yaml.load(f, Loader=yaml.FullLoader)
        cfg = CfgNode(cfg_dict)

    # # (Optional:) enable this to track autograd issues when debugging
    # torch.autograd.set_detect_anomaly(True)

    # Load dataset
    if cfg.dataset.type.lower() == "llff":
        images, poses, _, _, i_test = load_llff_data(
            cfg.dataset.basedir, factor=cfg.dataset.downsample_factor)
        hwf = poses[0, :3, -1]
        poses = poses[:, :3, :4]
        if not isinstance(i_test, list):
            i_test = [i_test]
        if cfg.dataset.llffhold > 0:
            i_test = np.arange(images.shape[0])[::cfg.dataset.llffhold]
        i_val = i_test
        i_train = np.array([
            i for i in np.arange(images.shape[0])
            if (i not in i_test and i not in i_val)
        ])
        H, W, focal = hwf
        H, W = int(H), int(W)
        images = torch.from_numpy(images)
        poses = torch.from_numpy(poses)
        USE_HR_LR = False

        # Load LR images
        if hasattr(cfg.dataset, "relative_lr_factor"):
            assert hasattr(cfg.dataset, "hr_fps")
            assert hasattr(cfg.dataset, "hr_frequency")
            USE_HR_LR = True
            images_lr, poses_lr, _, _, i_test = load_llff_data(
                cfg.dataset.basedir,
                factor=cfg.dataset.downsample_factor *
                cfg.dataset.relative_lr_factor)
            hwf = poses_lr[0, :3, -1]
            poses_lr = poses_lr[:, :3, :4]
            if not isinstance(i_test, list):
                i_test = [i_test]
            if cfg.dataset.llffhold > 0:
                i_test = np.arange(images_lr.shape[0])[::cfg.dataset.llffhold]
            i_train_lr = np.array([
                i for i in np.arange(images_lr.shape[0]) if (i not in i_test)
            ])
            H_lr, W_lr, focal_lr = hwf
            H_lr, W_lr = int(H_lr), int(W_lr)
            images_lr = torch.from_numpy(images_lr)
            poses_lr = torch.from_numpy(poses_lr)

            # Expose only some HR images
            i_train = i_train[::cfg.dataset.hr_fps]

            print(f'LR summary: N={i_train_lr.shape[0]}, '
                  f'resolution={H_lr}x{W_lr}, focal-length={focal_lr}')
            print(f'HR summary: N={i_train.shape[0]}, '
                  f'resolution={H}x{W}, focal-length={focal}')

    # Seed experiment for repeatability
    seed = cfg.experiment.randomseed
    np.random.seed(seed)
    torch.manual_seed(seed)

    # Device on which to run.
    device = f"cuda:{cfg.experiment.gpu_id}"

    encode_position_fn = get_embedding_function(
        num_encoding_functions=cfg.models.coarse.num_encoding_fn_xyz,
        include_input=cfg.models.coarse.include_input_xyz,
        log_sampling=cfg.models.coarse.log_sampling_xyz,
    )

    encode_direction_fn = None
    if cfg.models.coarse.use_viewdirs:
        encode_direction_fn = get_embedding_function(
            num_encoding_functions=cfg.models.coarse.num_encoding_fn_dir,
            include_input=cfg.models.coarse.include_input_dir,
            log_sampling=cfg.models.coarse.log_sampling_dir,
        )

    # Initialize a coarse and fine resolution model.
    model_coarse = getattr(models, cfg.models.coarse.type)(
        num_encoding_fn_xyz=cfg.models.coarse.num_encoding_fn_xyz,
        num_encoding_fn_dir=cfg.models.coarse.num_encoding_fn_dir,
        include_input_xyz=cfg.models.coarse.include_input_xyz,
        include_input_dir=cfg.models.coarse.include_input_dir,
        use_viewdirs=cfg.models.coarse.use_viewdirs,
    )
    model_coarse.to(device)

    model_fine = getattr(models, cfg.models.fine.type)(
        num_encoding_fn_xyz=cfg.models.fine.num_encoding_fn_xyz,
        num_encoding_fn_dir=cfg.models.fine.num_encoding_fn_dir,
        include_input_xyz=cfg.models.fine.include_input_xyz,
        include_input_dir=cfg.models.fine.include_input_dir,
        use_viewdirs=cfg.models.fine.use_viewdirs,
    )
    model_fine.to(device)

    # Initialize optimizer.
    trainable_parameters = list(model_coarse.parameters()) + list(
        model_fine.parameters())
    optimizer = getattr(torch.optim, cfg.optimizer.type)(trainable_parameters,
                                                         lr=cfg.optimizer.lr)

    # Setup logging.
    logdir = os.path.join(cfg.experiment.logdir, cfg.experiment.id)
    os.makedirs(logdir, exist_ok=True)
    writer = SummaryWriter(logdir)
    # Write out config parameters.
    with open(os.path.join(logdir, "config.yml"), "w") as f:
        f.write(cfg.dump())  # cfg, f, default_flow_style=False)

    # By default, start at iteration 0 (unless a checkpoint is specified).
    start_iter = 0

    # Load an existing checkpoint, if a path is specified.
    if os.path.exists(configargs.load_checkpoint):
        checkpoint = torch.load(configargs.load_checkpoint)
        model_coarse.load_state_dict(checkpoint["model_coarse_state_dict"])
        model_fine.load_state_dict(checkpoint["model_fine_state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        start_iter = checkpoint["iter"]

    # # TODO: Prepare raybatch tensor if batching random rays

    for i in trange(start_iter, cfg.experiment.train_iters):

        model_coarse.train()
        model_fine.train()

        if USE_HR_LR and i % cfg.dataset.hr_frequency != 0:
            H_iter, W_iter, focal_iter = H_lr, W_lr, focal_lr
            i_train_iter = i_train_lr
            images_iter, poses_iter = images_lr, poses_lr
        else:
            H_iter, W_iter, focal_iter = H, W, focal
            i_train_iter = i_train
            images_iter, poses_iter = images, poses

        img_idx = np.random.choice(i_train_iter)
        img_target = images_iter[img_idx].to(device)
        pose_target = poses_iter[img_idx, :3, :4].to(device)
        ray_origins, ray_directions = get_ray_bundle(H_iter, W_iter,
                                                     focal_iter, pose_target)
        coords = torch.stack(
            meshgrid_xy(
                torch.arange(H_iter).to(device),
                torch.arange(W_iter).to(device)),
            dim=-1,
        )
        coords = coords.reshape((-1, 2))
        select_inds = np.random.choice(coords.shape[0],
                                       size=(cfg.nerf.train.num_random_rays),
                                       replace=False)
        select_inds = coords[select_inds]
        ray_origins = ray_origins[select_inds[:, 0], select_inds[:, 1], :]
        ray_directions = ray_directions[select_inds[:, 0], select_inds[:,
                                                                       1], :]
        target_s = img_target[select_inds[:, 0], select_inds[:, 1], :]

        rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
            H_iter,
            W_iter,
            focal_iter,
            model_coarse,
            model_fine,
            ray_origins,
            ray_directions,
            cfg,
            mode="train",
            encode_position_fn=encode_position_fn,
            encode_direction_fn=encode_direction_fn,
        )
        target_ray_values = target_s

        coarse_loss = torch.nn.functional.mse_loss(rgb_coarse[..., :3],
                                                   target_ray_values[..., :3])
        fine_loss = torch.nn.functional.mse_loss(rgb_fine[..., :3],
                                                 target_ray_values[..., :3])
        loss = coarse_loss + fine_loss
        loss.backward()
        psnr = mse2psnr(loss.item())
        optimizer.step()
        optimizer.zero_grad()

        # Learning rate updates
        num_decay_steps = cfg.scheduler.lr_decay * 1000
        lr_new = cfg.optimizer.lr * (cfg.scheduler.lr_decay_factor
                                     **(i / num_decay_steps))
        for param_group in optimizer.param_groups:
            param_group["lr"] = lr_new

        if i % cfg.experiment.print_every == 0 or i == cfg.experiment.train_iters - 1:
            tqdm.write("[TRAIN] Iter: " + str(i) + " Loss: " +
                       str(loss.item()) + " PSNR: " + str(psnr))
        writer.add_scalar("train/loss", loss.item(), i)
        writer.add_scalar("train/coarse_loss", coarse_loss.item(), i)
        writer.add_scalar("train/fine_loss", fine_loss.item(), i)
        writer.add_scalar("train/psnr", psnr, i)

        # Validation
        if (i % cfg.experiment.validate_every == 0
                or i == cfg.experiment.train_iters - 1):
            tqdm.write("[VAL] =======> Iter: " + str(i))
            model_coarse.eval()
            model_fine.eval()

            start = time.time()
            with torch.no_grad():
                img_idx = np.random.choice(i_val)
                img_target = images[img_idx].to(device)
                pose_target = poses[img_idx, :3, :4].to(device)
                ray_origins, ray_directions = get_ray_bundle(
                    H, W, focal, pose_target)
                rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
                    H,
                    W,
                    focal,
                    model_coarse,
                    model_fine,
                    ray_origins,
                    ray_directions,
                    cfg,
                    mode="validation",
                    encode_position_fn=encode_position_fn,
                    encode_direction_fn=encode_direction_fn,
                )
                target_ray_values = img_target
                coarse_loss = img2mse(rgb_coarse[..., :3],
                                      target_ray_values[..., :3])
                fine_loss = img2mse(rgb_fine[..., :3],
                                    target_ray_values[..., :3])
                loss = coarse_loss + fine_loss
                psnr = mse2psnr(loss.item())
                writer.add_scalar("validation/loss", loss.item(), i)
                writer.add_scalar("validation/coarse_loss", coarse_loss.item(),
                                  i)
                writer.add_scalar("validation/fine_loss", fine_loss.item(), i)
                writer.add_scalar("validataion/psnr", psnr, i)
                writer.add_image("validation/rgb_coarse",
                                 cast_to_image(rgb_coarse[..., :3]), i)
                writer.add_image("validation/rgb_fine",
                                 cast_to_image(rgb_fine[..., :3]), i)
                writer.add_image(
                    "validation/img_target",
                    cast_to_image(target_ray_values[..., :3]),
                    i,
                )
                tqdm.write("Validation loss: " + str(loss.item()) +
                           " Validation PSNR: " + str(psnr) + " Time: " +
                           str(time.time() - start))

        if i % cfg.experiment.save_every == 0 or i == cfg.experiment.train_iters - 1:
            checkpoint_dict = {
                "iter": i,
                "model_coarse_state_dict": model_coarse.state_dict(),
                "model_fine_state_dict": model_fine.state_dict(),
                "optimizer_state_dict": optimizer.state_dict(),
                "loss": loss,
                "psnr": psnr,
            }
            torch.save(
                checkpoint_dict,
                os.path.join(logdir, "checkpoint" + str(i).zfill(5) + ".ckpt"),
            )
            tqdm.write("================== Saved Checkpoint =================")

    print("Done!")