def csa_example(): cs = csa.cset(csa.random(0.1), 10000.0, 1.0) pop1 = nest.LayoutNetwork("iaf_neuron", [16]) pop2 = nest.LayoutNetwork("iaf_neuron", [16]) nest.PrintNetwork(10) nest.CGConnect(pop1, pop2, cs, {"weight": 0, "delay": 1}) pg = nest.Create("poisson_generator", params={"rate": 80000.0}) nest.DivergentConnect(pg, nest.GetLeaves(pop1)[0], 1.2, 1.0) vm_params = { "record_to": ["memory"], "withgid": True, "withtime": True, "interval": 0.1 } vm = nest.Create("voltmeter", params=vm_params) nest.DivergentConnect(vm, nest.GetLeaves(pop2)[0]) nest.Simulate(50.0) from nest import visualization allnodes = pg + nest.GetLeaves(pop1)[0] + nest.GetLeaves(pop2)[0] + vm visualization.plot_network(allnodes, "test_csa.png") if havePIL: im = Image.open("test_csa.png") im.show() from nest import voltage_trace voltage_trace.from_device(vm)
def csa_example(): cs = csa.cset(csa.random(0.1), 10000.0, 1.0) pop1 = nest.LayoutNetwork("iaf_neuron", [16]) pop2 = nest.LayoutNetwork("iaf_neuron", [16]) nest.PrintNetwork(10) nest.CGConnect(pop1, pop2, cs, {"weight": 0, "delay": 1}) pg = nest.Create("poisson_generator", params={"rate": 80000.0}) nest.DivergentConnect(pg, nest.GetLeaves(pop1)[0], 1.2, 1.0) vm_params = {"record_to": ["memory"], "withgid": True, "withtime": True, "interval": 0.1} vm = nest.Create("voltmeter", params=vm_params) nest.DivergentConnect(vm, nest.GetLeaves(pop2)[0]) nest.Simulate(50.0) from nest import visualization allnodes = pg + nest.GetLeaves(pop1)[0] + nest.GetLeaves(pop2)[0] + vm visualization.plot_network(allnodes, "test_csa.png") if havePIL: im = Image.open("test_csa.png") im.show() from nest import voltage_trace voltage_trace.from_device(vm)
def test_plot_network(self): """Test plot_network""" import nest.visualization as nvis nest.ResetKernel() sources = nest.Create('iaf_psc_alpha', 10) targets = nest.Create('iaf_psc_alpha', 10) nest.Connect(sources, targets) filename = os.path.join(self.nest_tmpdir(), 'network_plot.png') self.filenames.append(filename) nvis.plot_network(sources + targets, filename) assert os.path.isfile(filename), 'Plot was not created or not saved'
the neurons of the pre-synaptic population. """ pg = nest.Create("poisson_generator", params={"rate": 100000.0}) nest.Connect(pg, pre, "all_to_all") """ To measure and record the membrane potentials of the neurons, we create a `voltmeter` and connect it to all post-synaptic nodes. """ vm = nest.Create("voltmeter") nest.Connect(vm, post, "all_to_all") """ We save the whole connection graph of the network as a PNG image using the `plot_network` function of the `visualization` submodule of PyNEST. """ allnodes = pg + pre + post + vm visualization.plot_network(allnodes, "csa_example_graph.png") """ Finally, we simulate the network for 50 ms. The voltage traces of the post-synaptic nodes are plotted. """ nest.Simulate(50.0) voltage_trace.from_device(vm)
""" To stimulate the network, we create a `poisson_generator` and set it up to fire with a rate of 100000 spikes per second. It is connected to the neurons of the pre-synaptic population. """ pg = nest.Create("poisson_generator", params={"rate": 100000.0}) nest.Connect(pg, pre, "all_to_all") """ To measure and record the membrane potentials of the neurons, we create a `voltmeter` and connect it to all post-synaptic nodes. """ vm = nest.Create("voltmeter") nest.Connect(vm, post, "all_to_all") """ We save the whole connection graph of the network as a PNG image using the `plot_network` function of the `visualization` submodule of PyNEST. """ allnodes = pg + pre + post + vm visualization.plot_network(allnodes, "csa_example_graph.png") """ Finally, we simulate the network for 50 ms. The voltage traces of the post-synaptic nodes are plotted. """ nest.Simulate(50.0) voltage_trace.from_device(vm)