def test_libcsa_cgnext(self):
        """cgnext"""

        nest.ResetKernel()

        w = 10000.0
        d = 1.0
        cs = libcsa.cset(libcsa.oneToOne, w, d)

        nest.sli_push(cs)
        nest.sli_run('dup')
        nest.sli_push(numpy.array([0, 1, 2, 3]))
        nest.sli_push(numpy.array([0, 1, 2, 3]))
        nest.sli_run('cgsetmask')
        nest.sli_run('dup')
        nest.sli_run('cgstart')
        for i in range(4):
            nest.sli_run('dup')
            nest.sli_run('cgnext')
            self.assertEqual(nest.sli_pop(), True)
            self.assertEqual(nest.sli_pop(), d)
            self.assertEqual(nest.sli_pop(), w)
            self.assertEqual(nest.sli_pop(), i)
            self.assertEqual(nest.sli_pop(), i)
        nest.sli_run('cgnext')
        self.assertEqual(nest.sli_pop(), False)
    def test_libcsa_cgnext(self):
        """cgnext"""

        nest.ResetKernel()

        w = 10000.0
        d = 1.0
        cs = libcsa.cset(libcsa.oneToOne, w, d)

        nest.sli_push(cs)
        nest.sli_run('dup')
        nest.sli_push(numpy.array([0, 1, 2, 3]))
        nest.sli_push(numpy.array([0, 1, 2, 3]))
        nest.sli_run('cgsetmask')
        nest.sli_run('dup')
        nest.sli_run('cgstart')
        for i in range(4):
            nest.sli_run('dup')
            nest.sli_run('cgnext')
            self.assertEqual(nest.sli_pop(), True)
            self.assertEqual(nest.sli_pop(), d)
            self.assertEqual(nest.sli_pop(), w)
            self.assertEqual(nest.sli_pop(), i)
            self.assertEqual(nest.sli_pop(), i)
        nest.sli_run('cgnext')
        self.assertEqual(nest.sli_pop(), False)
Example #3
0
    def get_help_text(self, name):

        nest.sli_run("statusdict /prgdocdir get")
        docdir = nest.sli_pop()

        helptext = "No documentation available"

        for subdir in ["cc", "sli"]:
            filename = os.path.join(docdir, "help", subdir, name + ".hlp")
            if os.path.isfile(filename):
                helptext = open(filename, 'r').read()

        return helptext
    def get_help_text(self, name):

        nest.sli_run("statusdict /prgdocdir get")
        docdir = nest.sli_pop()

        helptext = "No documentation available"

        for subdir in ["cc", "sli"]:
            filename = os.path.join(docdir, "help", subdir, name + ".hlp")
            if os.path.isfile(filename):
                helptext = open(filename, 'r').read()

        return helptext
def LambertWm1(x):
    nest.sli_push(x)
    nest.sli_run('LambertWm1')
    y = nest.sli_pop()
    return y
from . import compatibility

try:
    import libcsa
    HAVE_LIBCSA = True
except ImportError:
    HAVE_LIBCSA = False

try:
    import numpy
    HAVE_NUMPY = True
except ImportError:
    HAVE_NUMPY = False

nest.sli_run("statusdict/have_libneurosim ::")
HAVE_LIBNEUROSIM = nest.sli_pop()


@nest.check_stack
@unittest.skipIf(not HAVE_LIBCSA, 'Python libcsa package is not available')
@unittest.skipIf(
    not HAVE_LIBNEUROSIM,
    'PyNEST was built without the libneurosim library'
)
class libcsaTestCase(unittest.TestCase):
    """libcsa tests"""

    def test_libcsa_OneToOne_subnet_1d(self):
        """One-to-one connectivity with 1-dim subnets"""

        nest.ResetKernel()
def LambertWm1(x):
    nest.sli_push(x); nest.sli_run('LambertWm1'); y=nest.sli_pop()
    return y
Example #8
0
    print("Brunel network simulation (Python)")
    print("Number of neurons : {0}".format(N_neurons))
    # including devices and noise
    print("Number of synapses: {0}".format(num_synapses))
    # neurons + noise + spike detectors
    print(
        "       Exitatory  : {0}".format(int(CE * N_neurons) + 2 * N_neurons))
    print("       Inhibitory : {0}".format(int(CI * N_neurons)))
    print("Excitatory rate   : %.2f Hz" % rate_ex)
    print("Inhibitory rate   : %.2f Hz" % rate_in)
    print("Stimulus rate     : %.2f Hz" % rate_stim)
    print("Building time     : %.2f s" % build_time)
    print("Simulation time   : %.2f s" % sim_time)

    nest.sli_run('memory_thisjob')  # virtual memory size of NEST process
    memory = nest.sli_pop()
    print("Memory            : %.2f kB" % memory)
    '''
    A dictionary for population parameters is created to allow for easier access.
    '''

    pops = {}
    pops['EX'] = {}
    pops['IN'] = {}
    pops['STIM'] = {}

    # neuron numbers
    pops['EX']['N'] = NE
    pops['IN']['N'] = NI
    pops['STIM']['N'] = N_stim
from . import compatibility

try:
    import libcsa
    HAVE_LIBCSA = True
except ImportError:
    HAVE_LIBCSA = False

try:
    import numpy
    HAVE_NUMPY = True
except ImportError:
    HAVE_NUMPY = False

nest.sli_run("statusdict/have_libneurosim ::")
HAVE_LIBNEUROSIM = nest.sli_pop()


@nest.check_stack
@unittest.skipIf(not HAVE_LIBCSA, 'Python libcsa package is not available')
@unittest.skipIf(not HAVE_LIBNEUROSIM,
                 'PyNEST was built without the libneurosim library')
class libcsaTestCase(unittest.TestCase):
    """libcsa tests"""
    def test_libcsa_OneToOne_subnet_1d(self):
        """One-to-one connectivity with 1-dim subnets"""

        nest.ResetKernel()

        n = 4  # number of neurons