Example #1
0
t1 = System.currentTimeMillis()

for peak in peaks:
    sphere = sphereFactory.create(
        [int(peak[0]), int(peak[1]), int(peak[2])], radius, ra)
    s = sum(imap(FloatType.getRealFloat, sphere.cursor()))
    intensities1.append(float(s) / sphere.size())

t2 = System.currentTimeMillis()

print "Elapsed time:", (t2 - t1), "ms"

#print intensities1

# Try now with HyperSphereCursor
hs = HyperSphere(copy2, Point(3), radius)
size = hs.size()
intensities2 = []
hsc = hs.cursor()

t3 = System.currentTimeMillis()

for peak in peaks:
    hsc.updateCenter([int(peak[0]), int(peak[1]), int(peak[2])])
    s = sum(imap(FloatType.getRealFloat, hsc))
    intensities2.append(float(s) / size)

t4 = System.currentTimeMillis()

print "Elapsed time:", (t4 - t3), "ms"
from net.imglib2 import Point;

from net.imglib2.algorithm.region.hypersphere import HyperSphere;

# create an empty image 
phantom=ops.create().img(array([xSize, ySize], 'l'))

# use the randomAccess interface to place points in the image
randomAccess= phantom.randomAccess();
randomAccess.setPosition(array([xSize/2, ySize/2], 'l'));
randomAccess.get().setReal(255.0);	

randomAccess.setPosition(array([xSize/4, ySize/4], 'l'));
randomAccess.get().setReal(255.0);

location = Point(phantom.numDimensions())
location.setPosition(array([3*xSize/4, 3*ySize/4], 'l'));

hyperSphere = HyperSphere(phantom, location, 5);
		
for value in hyperSphere:
	value.setReal(16);

display.createDisplay("phantom", phantom)

# create psf using the gaussian kernel op (alternatively PSF could be an input to the script)
psf=ops.create().kernelGauss(array([10, 10], 'd'));

# convolve psf with phantom
convolved=ops.filter().convolve(phantom, psf);
display.createDisplay("convolved", convolved)
from net.imglib2 import Point

from net.imglib2.algorithm.region.hypersphere import HyperSphere

# create an empty image
phantom = ops.create().img(array([xSize, ySize], 'l'))

# use the randomAccess interface to place points in the image
randomAccess = phantom.randomAccess()
randomAccess.setPosition(array([xSize / 2, ySize / 2], 'l'))
randomAccess.get().setReal(255.0)

randomAccess.setPosition(array([xSize / 4, ySize / 4], 'l'))
randomAccess.get().setReal(255.0)

location = Point(phantom.numDimensions())
location.setPosition(array([3 * xSize / 4, 3 * ySize / 4], 'l'))

hyperSphere = HyperSphere(phantom, location, 5)

for value in hyperSphere:
    value.setReal(16)

display.createDisplay("phantom", phantom)

# create psf using the gaussian kernel op (alternatively PSF could be an input to the script)
psf = ops.create().kernelGauss(array([10, 10], 'd'))

# convolve psf with phantom
convolved = ops.filter().convolve(phantom, psf)
display.createDisplay("convolved", convolved)
# create an empty image
phantom=ops.create().img([xSize, ySize, zSize])

# make phantom an ImgPlus
phantom=ops.create().imgPlus(phantom);

# use the randomAccess interface to place points in the image
randomAccess= phantom.randomAccess()
randomAccess.setPosition([xSize/2, ySize/2, zSize/2])
randomAccess.get().setReal(255.0)

randomAccess.setPosition([xSize/4, ySize/4, zSize/4])
randomAccess.get().setReal(255.0)

location = Point(phantom.numDimensions())
location.setPosition([3*xSize/4, 3*ySize/4, 3*zSize/4])

hyperSphere = HyperSphere(phantom, location, 5)

for value in hyperSphere:
        value.setReal(16)

phantom.setName("phantom")

# create psf using the gaussian kernel op (alternatively PSF could be an input to the script)
psf=ops.create().kernelGauss([5, 5, 5])

# convolve psf with phantom
convolved=ops.filter().convolve(phantom, psf)
Example #5
0
#@ UIService ui
#@OUTPUT ImgPlus phantom
#@OUTPUT ImgPlus convolved
#@OUTPUT ImgPlus deconvolved1
#@OUTPUT ImgPlus deconvolved2

from net.imglib2 import Point
from net.imglib2.algorithm.region.hypersphere import HyperSphere

xSize = 200
ySize = 200

# create an empty image
phantom = ops.create().img([xSize, ySize])

location = Point(phantom.numDimensions())
location.setPosition([xSize / 2, ySize / 2])

hyperSphere = HyperSphere(phantom, location, 20)

for value in hyperSphere:
    value.setReal(16)

ui.show("phantom", phantom)

psf1 = ops.create().kernelGauss([2, 2])
psf2 = ops.create().kernelGauss([4, 4])

# convolve psf with phantom
convolved = ops.filter().convolve(phantom, psf1)
Example #6
0
from net.imglib2.algorithm.math.ImgMath import compute, gen
from net.imglib2.img.display.imagej import ImageJFunctions as IL
from net.imglib2.type.numeric.integer import UnsignedByteType
from net.imglib2.img.array import ArrayImgs
from net.imglib2.util import Intervals
from net.imglib2 import KDTree, Point

locations = [(10, 15), (25, 40), (30, 75), (80, 60)]

points = [
    Point.wrap([x, y]) for x, y in [(10, 15), (25, 40), (30, 75), (80, 60)]
]
values = [UnsignedByteType(v) for v in [128, 164, 200, 255]]

kt = KDTree(values, points)
dimensions = [100, 100]

op = gen(kt, 10)
target = ArrayImgs.unsignedBytes(
    Intervals.dimensionsAsLongArray(op.getInterval()))
compute(op).into(target)

IL.wrap(target, "KDTree").show()