def demo_wgan_ab(): noise = tf.constant(np.random.normal(size=(64, 128)).astype('float32')) model = Net(train=False) model.output_dim = 2 colorized = model.GAN_G(noise) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, _CKPT_PATH) ab = sess.run(colorized) # [-1, 1] ab *= 110. l = np.full((64, 64, 64, 1), 50) lab = np.concatenate((l, ab), axis=-1) rgbs = [] for i in xrange(64): rgb = color.lab2rgb(lab[i, :, :, :]) rgbs.append(rgb) rgbs = np.array(rgbs) save_images(rgbs, '/srv/glusterfs/xieya/image/color/samples_ab.png')
def demo_wgan_rgb(): noise = tf.constant(np.random.normal(size=(64, 128)).astype('float32')) model = Net(train=False) model.output_dim = 3 colorized = model.GAN_G(noise) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, _CKPT_PATH) rgb = sess.run(colorized) # [-1, 1] rgb = ((rgb + 1.) * (255.99 / 2)).astype('uint8') save_images(rgb, '/srv/glusterfs/xieya/image/color/samples_rgb.png') rgb_new = [] for i in xrange(64): lab = color.rgb2lab(rgb[i, :, :, :]) lab[:, :, 0] = 50. # Remove l. rgb_new.append(color.lab2rgb(lab)) rgb_new = np.array(rgb_new) save_images(rgb_new, '/srv/glusterfs/xieya/image/color/samples_rgb_ab.png')