Example #1
0
def get_date_list(start, stop, days):
    ret = []
    delta = datetime.timedelta(days=days)
    check = start
    while check <= stop:
        ret.append(check)
        try:
            check += delta
        except TypeError:
            # Probably an older netcdftime object
            check = datetime.datetime(check.year, check.month, check.day, check.hour, check.second, check.microsecond)
            check += delta
            check = netcdftime.datetime(check.year, check.month, check.day, check.hour, check.second, check.microsecond)
    return ret
Example #2
0
    def _calculate_structure(self):
        # Make value arrays for the vectorisable field elements.
        element_definitions = self._field_vector_element_arrays()

        # Identify the vertical elements and payload.
        blev_array = dict(element_definitions).get('blev')
        vertical_elements = ('lblev', 'bhlev', 'bhrlev', 'brsvd1', 'brsvd2',
                             'brlev')

        # Make an ordering copy.
        ordering_definitions = element_definitions[:]
        # Replace time value tuples with integers and bind the vertical
        # elements to the (expected) primary vertical element "blev".
        for index, (name, array) in enumerate(ordering_definitions):
            if name in ('t1', 't2'):
                array = np.array(
                    [self._time_comparable_int(*tuple(val)) for val in array])
                ordering_definitions[index] = (name, array)
            if name in vertical_elements and blev_array is not None:
                ordering_definitions[index] = (name, blev_array)

        # Perform the main analysis: get vector dimensions, elements, arrays.
        dims_shape, primary_elements, vector_element_arrays_and_dims = \
            optimal_array_structure(ordering_definitions,
                                    element_definitions)

        # Replace time tuples in the result with real datetime-like values.
        # N.B. so we *don't* do this on the whole (expanded) input arrays.
        for name in ('t1', 't2'):
            if name in vector_element_arrays_and_dims:
                arr, dims = vector_element_arrays_and_dims[name]
                arr_shape = arr.shape[:-1]
                extra_length = arr.shape[-1]
                # Flatten out the array apart from the last dimension,
                # convert to netcdftime objects, then reshape back.
                arr = np.array([
                    netcdftime.datetime(*args)
                    for args in arr.reshape(-1, extra_length)
                ]).reshape(arr_shape)
                vector_element_arrays_and_dims[name] = (arr, dims)

        # Write the private cache values, exposed as public properties.
        self._vector_dims_shape = dims_shape
        self._primary_dimension_elements = primary_elements
        self._element_arrays_and_dims = vector_element_arrays_and_dims
        # Do all this only once.
        self._structure_calculated = True
    def _calculate_structure(self):
        # Make value arrays for the vectorisable field elements.
        element_definitions = self._field_vector_element_arrays()

        # Identify the vertical elements and payload.
        blev_array = dict(element_definitions).get('blev')
        vertical_elements = ('lblev', 'bhlev', 'bhrlev',
                             'brsvd1', 'brsvd2', 'brlev')

        # Make an ordering copy.
        ordering_definitions = element_definitions[:]
        # Replace time value tuples with integers and bind the vertical
        # elements to the (expected) primary vertical element "blev".
        for index, (name, array) in enumerate(ordering_definitions):
            if name in ('t1', 't2'):
                array = np.array(
                    [self._time_comparable_int(*tuple(val)) for val in array])
                ordering_definitions[index] = (name, array)
            if name in vertical_elements and blev_array is not None:
                ordering_definitions[index] = (name, blev_array)

        # Perform the main analysis: get vector dimensions, elements, arrays.
        dims_shape, primary_elements, vector_element_arrays_and_dims = \
            optimal_array_structure(ordering_definitions,
                                    element_definitions)

        # Replace time tuples in the result with real datetime-like values.
        # N.B. so we *don't* do this on the whole (expanded) input arrays.
        for name in ('t1', 't2'):
            if name in vector_element_arrays_and_dims:
                arr, dims = vector_element_arrays_and_dims[name]
                arr_shape = arr.shape[:-1]
                extra_length = arr.shape[-1]
                # Flatten out the array apart from the last dimension,
                # convert to netcdftime objects, then reshape back.
                arr = np.array([netcdftime.datetime(*args)
                                for args in arr.reshape(-1, extra_length)]
                               ).reshape(arr_shape)
                vector_element_arrays_and_dims[name] = (arr, dims)

        # Write the private cache values, exposed as public properties.
        self._vector_dims_shape = dims_shape
        self._primary_dimension_elements = primary_elements
        self._element_arrays_and_dims = vector_element_arrays_and_dims
        # Do all this only once.
        self._structure_calculated = True