Example #1
0
    def measure_segclasses_with_zeroed_units(zeroed_units, sample_size=100):
        model.remove_edits()

        def zero_some_units(x, *args):
            x[:, zeroed_units] = 0
            return x

        model.edit_layer(layername, rule=zero_some_units)
        num_seglabels = len(segmodel.get_label_and_category_names()[0])

        def compute_mean_seg_in_images(batch_z, *args):
            img = model(batch_z.cuda())
            seg = segmodel.segment_batch(img, downsample=4)
            seg_area = seg.shape[2] * seg.shape[3]
            seg_counts = torch.bincount(
                (seg + (num_seglabels * torch.arange(
                    seg.shape[0], dtype=seg.dtype,
                    device=seg.device)[:, None, None, None])).view(-1),
                minlength=num_seglabels * seg.shape[0]).view(seg.shape[0], -1)
            seg_fracs = seg_counts.float() / seg_area
            return seg_fracs

        result = tally.tally_mean(compute_mean_seg_in_images,
                                  dataset,
                                  batch_size=30,
                                  sample_size=sample_size,
                                  pin_memory=True)
        model.remove_edits()
        return result
Example #2
0
def test_generator_segclass_delta_stats(model, dataset, segmodel,
        layername=None, zeroed_units=None, sample_size=None, cachefile=None):
    model.remove_edits()
    def zero_some_units(x, *args):
        x[:, zeroed_units] = 0
        return x
    num_seglabels = len(segmodel.get_label_and_category_names()[0])
    def compute_mean_delta_seg_in_images(batch_z, *args):
        # First baseline
        model.remove_edits()
        img = model(batch_z.cuda())
        seg = segmodel.segment_batch(img, downsample=4)
        seg_area = seg.shape[2] * seg.shape[3]
        seg_counts = torch.bincount((seg + (num_seglabels *
            torch.arange(seg.shape[0], dtype=seg.dtype, device=seg.device
                )[:,None,None,None])).view(-1),
            minlength=num_seglabels * seg.shape[0]).view(seg.shape[0], -1)
        seg_fracs = seg_counts.float() / seg_area
        # Then with changes
        model.edit_layer(layername, rule=zero_some_units)
        d_img = model(batch_z.cuda())
        d_seg = segmodel.segment_batch(d_img, downsample=4)
        d_seg_counts = torch.bincount((d_seg + (num_seglabels *
            torch.arange(seg.shape[0], dtype=seg.dtype, device=seg.device
                )[:,None,None,None])).view(-1),
            minlength=num_seglabels * seg.shape[0]).view(seg.shape[0], -1)
        d_seg_fracs = d_seg_counts.float() / seg_area
        return d_seg_fracs - seg_fracs
    result = tally.tally_mean(compute_mean_delta_seg_in_images, dataset,
                            batch_size=25, sample_size=sample_size,
                            pin_memory=True, cachefile=cachefile)
    model.remove_edits()
    return result
Example #3
0
    u_rq = qd.rq(layername)

    def intersect_99_fn(uimg, simg):
        s_99 = s_rq.quantiles(0.99)[None, :, None, None].cuda()
        u_99 = u_rq.quantiles(0.99)[None, :, None, None].cuda()
        with torch.no_grad():
            ux, sx = uimg.cuda(), simg.cuda()
            inst_net(ux)
            ur = inst_net.retained_layer('features.' + layername)
            inst_net(sx)
            sr = inst_net.retained_layer('features.' + layername)
            return ((sr > s_99).float() * (ur > u_99).float()).permute(
                0, 2, 3, 1).reshape(-1, ur.size(1))

    intersect_99 = tally.tally_mean(intersect_99_fn,
                                    ds,
                                    cachefile=os.path.join(
                                        qd.dir(layername), 'intersect_99.npz'))

    def compute_image_max(batch):
        inst_net(batch.cuda())
        return inst_net.retained_layer('features.' +
                                       layername).max(3)[0].max(2)[0]

    s_topk = tally.tally_topk(compute_image_max,
                              sds,
                              cachefile=os.path.join(qd.dir(layername),
                                                     's_topk.npz'))

    def compute_acts(image_batch):
        inst_net(image_batch.cuda())
        acts_batch = inst_net.retained_layer('features.' + layername)