#========================================= # CREATE THE NETWORK #========================================= # Create a random undirected graph and check valid (n=50, m=100) n = 20 G = [] while True: G = nx.gnm_random_graph(n, 2*n) if nx.is_connected(G): break # No dynamics are required G.graph['node_dyn'] = True G.graph['edge_dyn'] = False netevo.set_all_node_dynamics(G, rossler_node_dyn) #========================================= # EVOLVE THE NETWORK #========================================= # Perform the evolution (using simulated dynamics as part of the performance measure) iteration, G_final = netevo.evolve_sa(G, order_parameter, rewire, initial_temp=100.0, min_temp=0.0001, reporter=netevo.evo_sa_reporter) # Output GML files containing the initial and final toplogies (viewable in Cytoscape/yEd) netevo.write_to_file(G, 'evolution_sa_dyn_initial.gml') netevo.write_to_file(G_final, 'evolution_sa_dyn_final.gml', node_keys=['state'])
return float('inf') #========================================= # CREATE THE NETWORK #========================================= # Create a random undirected graph and check valid (n=50, m=100) n = 50 G = [] while True: G = nx.gnm_random_graph(n, 2*n) if eigenratio(G) != float('inf'): break # No dynamics are required G.graph['node_dyn'] = False G.graph['edge_dyn'] = False #========================================= # EVOLVE THE NETWORK #========================================= # Perform the evolution iteration, G_final = netevo.evolve_sa(G, eigenratio, rewire, initial_temp=100.0, min_temp=0.0000001, reporter=netevo.evo_sa_reporter) # Output GML files containing the initial and final toplogies netevo.write_to_file(G, 'evolution_sa_initial.gml') netevo.write_to_file(G_final, 'evolution_sa_final.gml')