Example #1
0
def test_pickle_csg():
    import netgen.csg as csg
    geo = csg.CSGeometry()
    geo.Add(csg.Sphere(csg.Pnt(0,0,0), 2).bc("sphere"))
    brick = csg.OrthoBrick(csg.Pnt(-3,-3,-3), csg.Pnt(3,3,3))
    geo.Add(csg.Cylinder(csg.Pnt(0,0,0), csg.Pnt(1,0,0), 0.5) * brick)
    geo.Add(csg.Ellipsoid(csg.Pnt(0,0,0), csg.Vec(1,0,0), csg.Vec(0,1,0), csg.Vec(0,0,0.5)))
    geo.Add(csg.Cone(csg.Pnt(0,0,0), csg.Pnt(3,0,0), 1, 0.5) * brick)
    geo.Add(csg.EllipticCone(csg.Pnt(0,0,0), csg.Vec(2,0,0), csg.Vec(0,1,0), 3, 0.5) * brick)
    geo.Add(csg.Torus(csg.Pnt(0,0,0), csg.Vec(0,1,0), 0.3, 0.05))
    pts2d = [[1,1], [1,-1], [-1,-1], [-1,1]]
    segs = [[0,1], [1,2], [2,3], [3,0]]
    curve = csg.SplineCurve2d()
    pnrs = [curve.AddPoint(*p) for p in pts2d]
    for s in segs:
            curve.AddSegment(pnrs[s[0]], pnrs[s[1]])
    geo.Add(csg.Revolution(csg.Pnt(0,0,0), csg.Pnt(1,0,0), curve))
    path = csg.SplineCurve3d()
    pnts = [(0,0,0), (2,0,0), (2,2,0)]
    segs = [(0,1,2)]
    for pnt in pnts:
        path.AddPoint (*pnt)

    for seg in segs:
        path.AddSegment (*seg)
    geo.Add(csg.Extrusion(path, curve, csg.Vec(0,0,1)))

    geo_dump = pickle.dumps(geo)
    geo2 = pickle.loads(geo_dump)
    vd1 = geo._visualizationData()
    vd2 = geo2._visualizationData()
    for val1, val2 in zip(vd1.values(), vd2.values()):
        assert numpy.array_equal(val1, val2)
Example #2
0
def gen_3dbeam(maxh, nref, comm, lens=[10, 1, 1]):
    b = csg.OrthoBrick(csg.Pnt(-1, 0, 0), csg.Pnt(lens[0], lens[1],
                                                  lens[2])).bc("other")
    p = csg.Plane(csg.Pnt(0, 0, 0), csg.Vec(-1, 0, 0)).bc("left")
    geo = csg.CSGeometry()
    geo.Add(b * p)
    return gen_ref_mesh(geo, maxh, nref, comm)
Example #3
0
 def __init__(self, pointa, pointb, *, eps=csg_eps):
     eps *= numpy.linalg.norm(numpy.array(pointb) - numpy.array(pointa))
     super().__init__(
         netgen_csg.OrthoBrick(netgen_csg.Pnt(*pointa),
                               netgen_csg.Pnt(*pointb)),
         csg_boundaries=[
             dolfin.CompiledSubDomain('on_boundary && near(x[0], xx, eps)',
                                      xx=pointa[0],
                                      eps=eps),
             dolfin.CompiledSubDomain('on_boundary && near(x[0], xx, eps)',
                                      xx=pointb[0],
                                      eps=eps),
             dolfin.CompiledSubDomain('on_boundary && near(x[1], xx, eps)',
                                      xx=pointa[1],
                                      eps=eps),
             dolfin.CompiledSubDomain('on_boundary && near(x[1], xx, eps)',
                                      xx=pointb[1],
                                      eps=eps),
             dolfin.CompiledSubDomain('on_boundary && near(x[2], xx, eps)',
                                      xx=pointa[2],
                                      eps=eps),
             dolfin.CompiledSubDomain('on_boundary && near(x[2], xx, eps)',
                                      xx=pointb[2],
                                      eps=eps)
         ])
Example #4
0
def hinges_3d(N=4, touch=True):
    geo = csg.CSGeometry()
    plane_left = csg.Plane(csg.Pnt(0, 0, 0), csg.Vec(-1, 0, 0)).bc("left")
    plane_right = csg.Plane(csg.Pnt(1, 0, 0), csg.Vec(1, 0, 0)).bc("outer")
    plane_bot = csg.Plane(csg.Pnt(0, 0, 0), csg.Vec(0, -1, 0)).bc("outer")
    plane_top = csg.Plane(csg.Pnt(0, 1, 0), csg.Vec(0, 1, 0)).bc("outer")
    plane_back = csg.Plane(csg.Pnt(0, 0, 0), csg.Vec(0, 0, -1)).bc("outer")
    plane_front = csg.Plane(csg.Pnt(0, 0, 1), csg.Vec(0, 0, 1)).bc("outer")

    box = csg.OrthoBrick(csg.Pnt(-0.1, -0.1, -0.1),
                         csg.Pnt(1, 1, 1)).mat("mat_a").bc("outer")

    # N hinges, so N+1 boxes, or N+2 if we do not want to touch diri
    h = 1 / (N + 1)

    hinges = list()
    if touch:
        h0 = csg.OrthoBrick(csg.Pnt(-0.1, -0.1, -0.1),
                            csg.Pnt(h, h, 1.1)).mat("mat_b").bc("inner")
        hinges.append(h0)

    rmin = 1
    rmax = N
    hinges = hinges + [
        csg.OrthoBrick(csg.Pnt(k * h, k * h, -0.1),
                       csg.Pnt((k + 1) * h,
                               (k + 1) * h, 1.1)).mat("mat_b").bc("inner")
        for k in range(rmin, rmax)
    ]

    hl = csg.OrthoBrick(csg.Pnt(N * h, N * h, -0.1),
                        csg.Pnt(1.1, 1.1, 1.1)).mat("mat_b").bc("inner")
    hinges.append(hl)

    bmh = box - hinges[0]
    hs = hinges[0]
    for h in hinges[1:]:
        hs = hs + h
        bmh = bmh - h

    geo.Add(bmh * plane_left * plane_right * plane_bot * plane_top *
            plane_back * plane_front)
    geo.Add(hs * plane_left * plane_right * plane_bot * plane_top *
            plane_back * plane_front)

    return geo
Example #5
0
def test_pickle_mesh():
    import netgen.csg as csg
    geo = csg.CSGeometry()
    brick = csg.OrthoBrick(csg.Pnt(-3, -3, -3), csg.Pnt(3, 3, 3))
    mesh = geo.GenerateMesh(maxh=0.2)
    assert geo == mesh.GetGeometry()
    dump = pickle.dumps([geo, mesh])
    geo2, mesh2 = pickle.loads(dump)
    assert geo2 == mesh2.GetGeometry()
    mesh.Save("msh1.vol.gz")
    mesh2.Save("msh2.vol.gz")
    import filecmp, os
    assert filecmp.cmp("msh1.vol.gz", "msh2.vol.gz")
    os.remove("msh1.vol.gz")
    os.remove("msh2.vol.gz")
Example #6
0
def cube_geo():
    origin = csg.Pnt(0, 0, 0)

    side = 1
    box = csg.OrthoBrick(origin, csg.Pnt(side, 2 * side,
                                         side)).bc('cube_outer')

    normal_vec = csg.Vec(0, 1, 0)
    topplane = csg.Plane(csg.Pnt(0, 1, 0), normal_vec).bc('dirichlet')

    cube = (box * topplane).mat('cube_mat')

    cube_geom = csg.CSGeometry()
    cube_geom.Add(cube)
    return cube_geom
Example #7
0
def get_Netgen_nonconformal(N, scale, offset, dim=2):
    """
    Generate a structured quadrilateral/hexahedral NGSolve mesh over a
    prescribed square/cubic domain.

    Args:
        N (list): Number of mesh elements in each direction (N+1 nodes).
        scale (list): Extent of the meshed domain in each direction ([-2,2]
                      square -> scale=[4,4]).
        offset (list): Centers the meshed domain in each direction ([-2,2]
                       square -> offset=[2,2]).
        dim (int): Dimension of the domain (must be 2 or 3).

    Returns:
        mesh (Netgen mesh): Structured quadrilateral/hexahedral Netgen mesh.
    """

    # Construct a Netgen mesh.
    ngmesh = ngmsh.Mesh()

    if dim == 2:
        ngmesh.SetGeometry(unit_square)
        ngmesh.dim = 2

        # Set evenly spaced mesh nodes.
        points = []
        for i in range(N[1] + 1):
            for j in range(N[0] + 1):
                x = -offset[0] + scale[0] * j / N[0]
                y = -offset[1] + scale[1] * i / N[1]
                z = 0
                points.append(ngmesh.Add(ngmsh.MeshPoint(ngmsh.Pnt(x, y, z))))

        # TODO: Should the user be able to set their own BC names?
        idx_dom = ngmesh.AddRegion('dom', dim=2)
        idx_bottom = ngmesh.AddRegion('bottom', dim=1)
        idx_right = ngmesh.AddRegion('right', dim=1)
        idx_top = ngmesh.AddRegion('top', dim=1)
        idx_left = ngmesh.AddRegion('left', dim=1)

        # Generate mesh faces.
        for i in range(N[1]):
            for j in range(N[0]):
                p1 = i * (N[0] + 1) + j
                p2 = i * (N[0] + 1) + j + 1
                p3 = i * (N[0] + 1) + j + 2 + N[0]
                p4 = i * (N[0] + 1) + j + 1 + N[0]
                ngmesh.Add(ngmsh.Element2D(idx_dom, [points[p1], points[p2], points[p3], points[p4]]))

        # Assign each edge of the domain to the same boundary.
        for i in range(N[1]):
            ngmesh.Add(ngmsh.Element1D([points[N[0] + i * (N[0] + 1)], points[N[0] + (i + 1) * (N[0] + 1)]], index=idx_right))
            ngmesh.Add(ngmsh.Element1D([points[(i + 1) * (N[0] + 1)], points[i * (N[0] + 1)]], index=idx_left))

        for i in range(N[0]):
            ngmesh.Add(ngmsh.Element1D([points[i], points[i + 1]], index=idx_bottom))
            ngmesh.Add(ngmsh.Element1D([points[1 + i + N[1] * (N[0] + 1)], points[i + N[1] * (N[0] + 1)]], index=idx_top))

    elif dim == 3:
        ngmesh.dim = 3

        p1 = (0, 0, 0)
        p2 = (1, 1, 1)
        cube = ngcsg.OrthoBrick(ngcsg.Pnt(p1[0], p1[1], p1[2]), ngcsg.Pnt(p2[0], p2[1], p2[2])).bc(1)
        geo = ngcsg.CSGeometry()
        geo.Add(cube)
        ngmesh.SetGeometry(geo)

        # Set evenly spaced mesh nodes.
        points = []
        for i in range(N[0] + 1):
            for j in range(N[1] + 1):
                for k in range(N[2] + 1):
                    x = -offset[0] + scale[0] * i / N[0]
                    y = -offset[1] + scale[1] * j / N[1]
                    z = -offset[2] + scale[2] * k / N[2]
                    points.append(ngmesh.Add(ngmsh.MeshPoint(ngmsh.Pnt(x, y, z))))

        # Generate mesh cells.
        for i in range(N[0]):
            for j in range(N[1]):
                for k in range(N[2]):
                    base = i * (N[1] + 1) * (N[2] + 1) + j * (N[2] + 1) + k
                    baseup = base + (N[1] + 1) * (N[2] + 1)
                    p1 = base
                    p2 = base + 1
                    p3 = base + (N[2] + 1) + 1
                    p4 = base + (N[2] + 1)
                    p5 = baseup
                    p6 = baseup + 1
                    p7 = baseup + (N[2] + 1) + 1
                    p8 = baseup + (N[2] + 1)
                    idx = 1
                    ngmesh.Add(ngmsh.Element3D(idx,
                                             [points[p1], points[p2], points[p3], points[p4], points[p5], points[p6],
                                              points[p7], points[p8]]))

        def add_bc(p, d, N, deta, neta, facenr):

            def add_seg(i, j, os):
                base = p + i * d + j * deta
                p1 = base
                p2 = base + os
                ngmesh.Add(ngmsh.Element1D([points[p1], points[p2]], index=facenr))

                return

            for i in range(N):
                for j in [0, neta]:
                    add_seg(i, j, d)

            for i in [0, N]:
                for j in range(neta):
                    add_seg(i, j, deta)

            for i in range(N):
                for j in range(neta):
                    base = p + i * d + j * deta
                    p1 = base
                    p2 = base + d
                    p3 = base + d + deta
                    p4 = base + deta
                    ngmesh.Add(ngmsh.Element2D(facenr, [points[p1], points[p2], points[p3], points[p4]]))

            return

        # Order is important!
        ngmesh.Add(ngmsh.FaceDescriptor(surfnr=4, domin=1, bc=1))
        ngmesh.Add(ngmsh.FaceDescriptor(surfnr=2, domin=1, bc=2))
        ngmesh.Add(ngmsh.FaceDescriptor(surfnr=5, domin=1, bc=3))
        ngmesh.Add(ngmsh.FaceDescriptor(surfnr=3, domin=1, bc=4))
        ngmesh.Add(ngmsh.FaceDescriptor(surfnr=0, domin=1, bc=5))
        ngmesh.Add(ngmsh.FaceDescriptor(surfnr=1, domin=1, bc=6))

        # Assign each exterior face of the domain to its respective boundary.
        add_bc(0, 1, N[2], N[2] + 1, N[1], 1)
        add_bc(0, (N[1] + 1) * (N[2] + 1), N[0], 1, N[2], 2)
        add_bc((N[0] + 1) * (N[1] + 1) * (N[2] + 1) - 1, -(N[2] + 1), N[1], -1, N[2], 3)
        add_bc((N[0] + 1) * (N[1] + 1) * (N[2] + 1) - 1, -1, N[2], -(N[1] + 1) * (N[2] + 1), N[0], 4)
        add_bc(0, N[2] + 1, N[1], (N[1] + 1) * (N[2] + 1), N[0], 5)
        add_bc((N[0] + 1) * (N[1] + 1) * (N[2] + 1) - 1, -(N[1] + 1) * (N[2] + 1), N[0], -(N[2] + 1), N[1], 6)

        # TODO: Should the user be able to specify their own bc names?
        bc_names = {0: 'back', 1: 'left', 2: 'front', 3: 'right', 4: 'bottom', 5: 'top'}
        for key, val in bc_names.items():
            ngmesh.SetBCName(key, val)

    else:
        raise ValueError('Only works with 2D or 3D meshes.')

    return ngmesh