Example #1
0
def switch_backbones(bone_name):
    from nets.resnet import resnet18, resnet34, resnet50, resnet101, resnet152, \
        resnext50_32x4d, resnext101_32x8d, wide_resnet50_2, wide_resnet101_2
    if bone_name == "resnet18":
        return resnet18()
    elif bone_name == "resnet34":
        return resnet34()
    elif bone_name == "resnet50":
        return resnet50()
    elif bone_name == "resnet101":
        return resnet101()
    elif bone_name == "resnet152":
        return resnet152()
    elif bone_name == "resnext50_32x4d":
        return resnext50_32x4d()
    elif bone_name == "resnext101_32x8d":
        return resnext101_32x8d()
    elif bone_name == "wide_resnet50_2":
        return wide_resnet50_2()
    elif bone_name == "wide_resnet101_2":
        return wide_resnet101_2()
    else:
        raise NotImplementedError(bone_name)
Example #2
0
from nets import alexnet

if 'resnet50' in args.name:
    model = resnet.resnet50(optimized=args.optimized)
elif 'resnet101' in args.name:
    model = resnet.resnet101()
elif 'resnet18' in args.name:
    model = resnet.resnet18(sigmoid=args.sigmoid)
elif 'resnet34' in args.name:
    model = resnet.resnet34()
elif 'vgg16_bn' in args.name:
    model = vgg.vgg16_bn()
elif 'alex' in args.name:
    model = alexnet()
else:
    model = resnet.resnet152()

device = torch.device('cuda:0')

if args.load:
    model.load_state_dict(torch.load(args.load))
    print("Load sucessfully !", args.load)

model.to(device)


def validation(output_file, val_loader):
    model.eval()
    for meta in tqdm(val_loader):
        data = meta['image'].to(device)
        names = meta['name']
Example #3
0
def _main(args):
    warnings.filterwarnings("ignore") 

    #### Constructing Criterion ####
    # criterion = losses.TripletLoss(1.)
    bin_size = 10
    start_bin, end_bin = (0., 4.)
    criterion = losses.FastAP(bin_size, start_bin, end_bin)
    # criterion = losses.TripletLoss(1.)
    
    #### Preparing Test Dataset ####
    test_data_root = './datasets/standford_online_products/test'
    test_data_transform = torch_transforms.Resize((225,225))
    test_num_retrieval_per_class = 10
    test_pos_neighbor, test_neg_neighbor = (True, True) if type(criterion) in [losses.TripletLoss] else (False, False)
    test_dataloader = sop.loader(   test_data_root, \
                                    data_transform=test_data_transform, \
                                    eval_mode=True, \
                                    eval_num_retrieval=test_num_retrieval_per_class, \
                                    neg_neighbor=test_neg_neighbor, \
                                    pos_neighbor=test_pos_neighbor
                                )

    #### Preparing Validation Dataset ####
    val_data_root = './datasets/standford_online_products/val'
    val_num_retrieval_per_class = test_num_retrieval_per_class
    val_data_transform = torch_transforms.Resize((225,225))
    val_pos_neighbor, val_neg_neighbor = (True, True) if type(criterion) in [losses.TripletLoss] else (False, False)
    val_dataloader = sop.loader(val_data_root, \
                                data_transform=val_data_transform, \
                                eval_mode=True, \
                                eval_num_retrieval=val_num_retrieval_per_class,\
                                neg_neighbor=val_neg_neighbor, \
                                pos_neighbor=val_pos_neighbor
                                )

    #### Preparing Pytorch ####
    device = args.device
    assert (device in ['cpu', 'multi']) or ( len(device.split(':'))==2 and device.split(':')[0]=='cuda' and int(device.split(':')[1]) < torch.cuda.device_count() ), 'Uknown device: {}'.format( device )
    torch.manual_seed(0)
    if args.device!='multi':
        device = torch.device(args.device)
    if args.gpu and torch.cuda.is_available():
        torch.cuda.manual_seed_all(0)

    #### Training Parameters ####
    start_epoch, num_epoch = (args.start_epoch, args.epochs)
    batch_size = args.batch_size
    num_workers = args.num_workers
    check_counter = 10

    #### Reports Address ####
    reports_root = './reports'
    analysis_num = args.analysis
    reports_path = '{}/{}'.format( reports_root, analysis_num)
    loading_model_path = '{}/models'.format( reports_path )

    #### Constructing Model ####
    pretrained = args.pretrained and False
    num_classes = 512
    
    model = None
    if args.resnet_type=='resnet18':
        model = resnet.resnet18(pretrained=pretrained)
    elif args.resnet_type=='resnet34':
        model = resnet.resnet34(pretrained=pretrained)
    elif args.resnet_type=='resnet50':
        model = resnet.resnet50(pretrained=pretrained)
    elif args.resnet_type=='resnet101':
        model = resnet.resnet101(pretrained=pretrained)
    elif args.resnet_type=='resnet152':
        model = resnet.resnet152(pretrained=pretrained)
    # elif args.resnet_type=='resnext50_32x4d':
    #     model = resnet.resnet18(pretrained=pretrained, num_classes=num_classes)
    # elif args.resnet_type=='resnext101_32x8d':
    #     model = resnet.resnext101_32x8d(pretrained=pretrained, num_classes=num_classes)
    model.fc = nn.Linear(512 * 1, num_classes)
    
    #### Validation ####
    print('{} Validation {}'.format('#'*32, '#'*32))
    for epoch in range(start_epoch, start_epoch+num_epoch):
        print('{} epoch = {} {}'.format('='*32, epoch, '='*32))

        #### Constructing Optimizer ####
        optimizer = None
        if args.optimizer=='sgd':
            optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
        elif args.optimizer=='adam':
            optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
            
        #### Loading Model ####
        model, optimizer = resnet.load( loading_model_path,
                                        'resnet_epoch_{}'.format( epoch ),
                                        model,
                                        optimizer=optimizer
                            )

        if args.gpu and torch.cuda.is_available():
            if device=='multi':
                model = nn.DataParallel(model)
            else:
                model = model.cuda(device=device)

        resnet.eval(
                    resnet=model,
                    eval_data=val_dataloader,
                    criterion=criterion,
                    report_path=reports_path,
                    epoch=epoch,
                    device=device,
                    batch_size=batch_size,
                    num_workers=num_workers,
                    check_counter=check_counter,
                    gpu=args.gpu and torch.cuda.is_available(),
                    eval_mode='val'
                    )
                    
    #### Testing ####
    print('{} Test {}'.format('#'*32, '#'*32))
    model, optimizer = resnet.load( loading_model_path,
                                    'resnet_epoch_{}'.format( start_epoch+num_epoch-1 ),
                                    model,
                                    optimizer=optimizer
                        )
    #### Constructing Optimizer ####
    optimizer = None
    if args.optimizer=='sgd':
        optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    elif args.optimizer=='adam':
        optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    if args.gpu and torch.cuda.is_available():
        if device=='multi':
            model = nn.DataParallel(model)
        else:
            model = model.cuda(device=device)
    
    resnet.eval(
                resnet=model,
                eval_data=test_dataloader,
                criterion=criterion,
                report_path=reports_path,
                epoch=start_epoch+num_epoch-1,
                device=device,
                batch_size=batch_size,
                num_workers=num_workers,
                check_counter=check_counter,
                gpu=args.gpu and torch.cuda.is_available(),
                eval_mode='test'
                )
Example #4
0
def _main(args):

    #### Preparing Train Dataset ####
    train_data_root = './datasets/standford_online_products/train'
    train_data_transform = torch_transforms.Resize((225, 225))
    train_num_retrieval_per_class = 10
    train_pca_n_components = 2
    train_pos_neighbor, train_neg_neighbor = (False, False)
    train_dataloader = sop.loader(  train_data_root, \
                                    data_transform=train_data_transform, \
                                    eval_mode=True, \
                                    eval_num_retrieval=train_num_retrieval_per_class, \
                                    neg_neighbor=train_neg_neighbor, \
                                    pos_neighbor=train_pos_neighbor
                                )

    #### Preparing Test Dataset ####
    test_data_root = './datasets/standford_online_products/test'
    test_data_transform = torch_transforms.Resize((225, 225))
    test_num_retrieval_per_class = 10
    test_pca_n_components = 2
    test_pos_neighbor, test_neg_neighbor = (False, False)
    test_dataloader = sop.loader(   test_data_root, \
                                    data_transform=test_data_transform, \
                                    eval_mode=True, \
                                    eval_num_retrieval=test_num_retrieval_per_class, \
                                    neg_neighbor=test_neg_neighbor, \
                                    pos_neighbor=test_pos_neighbor
                                )

    #### Preparing Validation Dataset ####
    val_data_root = './datasets/standford_online_products/val'
    val_num_retrieval_per_class = test_num_retrieval_per_class
    val_data_transform = torch_transforms.Resize((225, 225))
    val_pca_n_components = 2
    val_pos_neighbor, val_neg_neighbor = (False, False)
    val_dataloader = sop.loader(val_data_root, \
                                data_transform=val_data_transform, \
                                eval_mode=True, \
                                eval_num_retrieval=val_num_retrieval_per_class,\
                                neg_neighbor=val_neg_neighbor, \
                                pos_neighbor=val_pos_neighbor
                                )

    #### Preparing Pytorch ####
    device = args.device
    assert (device in [
        'cpu', 'multi'
    ]) or (len(device.split(':')) == 2 and device.split(':')[0] == 'cuda'
           and int(device.split(':')[1]) < torch.cuda.device_count()
           ), 'Uknown device: {}'.format(device)
    torch.manual_seed(0)
    if args.device != 'multi':
        device = torch.device(args.device)
    if args.gpu and torch.cuda.is_available():
        torch.cuda.manual_seed_all(0)

    #### Training Parameters ####
    start_epoch, num_epoch = (args.start_epoch, args.epochs)
    num_workers = args.num_workers
    check_counter = 10

    #### Reports Address ####
    reports_root = './reports'
    analysis_num = args.analysis
    reports_path = '{}/{}'.format(reports_root, analysis_num)
    loading_model_path = '{}/models'.format(reports_path)

    #### Constructing Model ####
    pretrained = args.pretrained
    num_classes = val_dataloader.num_classes()

    #### Constructing Model ####
    pretrained = args.pretrained
    num_classes = val_dataloader.num_classes()

    model = None
    if args.resnet_type == 'resnet18':
        model = resnet.resnet18(pretrained=pretrained, num_classes=num_classes)
    elif args.resnet_type == 'resnet34':
        model = resnet.resnet34(pretrained=pretrained, num_classes=num_classes)
    elif args.resnet_type == 'resnet50':
        model = resnet.resnet50(pretrained=pretrained, num_classes=num_classes)
    elif args.resnet_type == 'resnet101':
        model = resnet.resnet101(pretrained=pretrained,
                                 num_classes=num_classes)
    elif args.resnet_type == 'resnet152':
        model = resnet.resnet152(pretrained=pretrained,
                                 num_classes=num_classes)
    elif args.resnet_type == 'resnext50_32x4d':
        model = resnet.resnext50_32x4d(pretrained=pretrained,
                                       num_classes=num_classes)
    # elif args.resnet_type=='resnext101_32x8d':
    #     model = resnet.resnext101_32x8d(pretrained=pretrained, num_classes=num_classes)

    model, optimizer = resnet.load(loading_model_path,
                                   'resnet_epoch_{}'.format(start_epoch),
                                   model)

    if args.gpu and torch.cuda.is_available():
        if device == 'multi':
            model = nn.DataParallel(model)
        else:
            model = model.cuda(device=device)

    plot_representation(model, train_dataloader, device, args.gpu
                        and torch.cuda.is_available(), num_workers,
                        train_pca_n_components)
Example #5
0
def _main(args):
    warnings.filterwarnings("ignore") 

    #### Preparing Pytorch ####
    device = args.device
    assert (device in ['cpu', 'multi']) or ( len(device.split(':'))==2 and device.split(':')[0]=='cuda' and int(device.split(':')[1]) < torch.cuda.device_count() ), 'Uknown device: {}'.format( device )
    torch.manual_seed(0)
    if args.device!='multi':
        device = torch.device(args.device)
    if args.gpu and torch.cuda.is_available():
        torch.cuda.manual_seed_all(0)

    #### Constructing Criterion ####
    # criterion = losses.TripletLoss(1.)
    bin_size = 10
    start_bin, end_bin = (0., 4.)
    criterion = losses.FastAP(bin_size, start_bin, end_bin)
    pos_neighbor, neg_neighbor = (True, True) if type(criterion) in [losses.TripletLoss] else (False, False)

    #### Preparing Dataset ####
    train_data_root = './datasets/standford_online_products/train'
    train_data_transform = torch_transforms.Resize((225,225))
    dataloader = sop.loader( train_data_root, data_transform=train_data_transform, neg_neighbor=neg_neighbor, pos_neighbor=pos_neighbor)


    #### Constructing Model ####
    pretrained = args.pretrained and False
    num_classes = 512
    
    model = None
    if args.resnet_type=='resnet18':
        model = resnet.resnet18(pretrained=pretrained)
    elif args.resnet_type=='resnet34':
        model = resnet.resnet34(pretrained=pretrained)
    elif args.resnet_type=='resnet50':
        model = resnet.resnet50(pretrained=pretrained)
    elif args.resnet_type=='resnet101':
        model = resnet.resnet101(pretrained=pretrained)
    elif args.resnet_type=='resnet152':
        model = resnet.resnet152(pretrained=pretrained)
    # elif args.resnet_type=='resnext50_32x4d':
    #     model = resnet.resnet18(pretrained=pretrained, num_classes=num_classes)
    # elif args.resnet_type=='resnext101_32x8d':
    #     model = resnet.resnext101_32x8d(pretrained=pretrained, num_classes=num_classes)
    model.fc = nn.Linear(512 * 1, num_classes)

    if args.start_epoch!=0:
        model, optim

    if args.gpu and torch.cuda.is_available():
        if device=='multi':
            model = nn.DataParallel(model)
        else:
            model = model.cuda(device=device)


    #### Training Parameters ####
    start_epoch, num_epoch = (args.start_epoch, args.epochs)
    batch_size = args.batch_size
    num_workers = args.num_workers
    check_counter = 10

    #### Reports Address ####
    reports_root = './reports'
    analysis_num = args.analysis
    reports_path = '{}/{}'.format( reports_root, analysis_num)
    saving_model_path = '{}/models'.format( reports_path )
    model_name = 'resnet_{}_{}'.format( start_epoch, start_epoch+num_epoch)

    utility.mkdir( reports_path, 'models', forced_remove=False)

    #### Constructing Optimizer ####
    optimizer = None

    if args.optimizer=='sgd':
        optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    elif args.optimizer=='adam':
        optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    if start_epoch!=0:
        print('Loading model...')
        model, optimizer = resnet.load( saving_model_path,
                                        'resnet_epoch_{}'.format( start_epoch-1 ),
                                        model,
                                        optimizer=optimizer
                            )
 
    #### Training Model ####
    resnet.train( 
                resnet=model,
                train_data=dataloader,
                optimizer=optimizer,
                criterion=criterion,
                num_epoch=num_epoch,
                start_epoch=start_epoch,
                batch_size=batch_size,
                num_workers=num_workers,
                check_counter=check_counter,
                gpu=args.gpu and torch.cuda.is_available(),
                report_path=reports_path,
                saving_model_every_epoch=True,
                device=device
                )
    
    #### Saving Model ####
    resnet.save(saving_model_path, model_name, model, optimizer=optimizer)