def init_embedding(self): self.user_embedding = var_init( 'user_embedding', [self.n_users, self.emb_dim], tf.random_normal_initializer(mean=0.0, stddev=0.01)) self.train_visual_embedding = tf.Variable(tf.constant( 0.0, shape=[self.n_items + 1, 512]), trainable=False, name='train_visual_emb') self.item_category_embedding = var_init( 'item_category_embedding', [self.n_cates, self.emb_dim], tf.random_normal_initializer(mean=0.0, stddev=0.01))
def init_embedding(self): self.user_embedding = var_init( 'user_embedding', [self.n_users, self.emb_dim], tf.random_normal_initializer(mean=0.0, stddev=0.01)) item_category_embedding = var_init( 'item_category_embedding', [self.n_cates, self.emb_dim], tf.random_normal_initializer(mean=0.0, stddev=0.01)) self.item_category_embedding = tf.concat( [item_category_embedding, tf.zeros((1, self.emb_dim))], axis=0) self.visual_feature = tf.Variable(tf.constant( 0.0, shape=[self.n_items + 1, 4000]), trainable=False, name='visual_feat')
def init_embedding(self): category_embedding = var_init('category_embedding', [512, self.cate_dim], tf.random_normal_initializer()) self.category_embedding = tf.concat( [category_embedding, tf.zeros((1, self.cate_dim))], axis=0) self.train_visual_emb = tf.Variable(tf.constant(0.0, shape=[984984, 512]), trainable=False, name='train_visual_emb')