class COMA: def __init__(self, args): self.n_actions = args.n_actions self.n_agents = args.n_agents self.state_shape = args.state_shape self.obs_shape = args.obs_shape actor_input_shape = self.obs_shape # actor网络输入的维度,和vdn、qmix的rnn输入维度一样,使用同一个网络结构 critic_input_shape = self._get_critic_input_shape() # critic网络输入的维度 # 根据参数决定RNN的输入维度 if args.last_action: actor_input_shape += self.n_actions if args.reuse_network: actor_input_shape += self.n_agents self.args = args # 神经网络 # 每个agent选动作的网络,输出当前agent所有动作对应的概率,用该概率选动作的时候还需要用softmax再运算一次。 if self.args.alg == 'coma': print('Init alg coma') self.eval_rnn = RNN(actor_input_shape, args) elif self.args.alg == 'coma+commnet': print('Init alg coma+commnet') self.eval_rnn = CommNet(actor_input_shape, args) elif self.args.alg == 'coma+g2anet': print('Init alg coma+g2anet') self.eval_rnn = G2ANet(actor_input_shape, args) else: raise Exception("No such algorithm") # 得到当前agent的所有可执行动作对应的联合Q值,得到之后需要用该Q值和actor网络输出的概率计算advantage self.eval_critic = ComaCritic(critic_input_shape, self.args) self.target_critic = ComaCritic(critic_input_shape, self.args) if self.args.cuda: self.eval_rnn.cuda() self.eval_critic.cuda() self.target_critic.cuda() self.model_dir = args.model_dir + '/' + args.alg + '/' + args.map # 如果存在模型则加载模型 # if os.path.exists(self.model_dir + '/rnn_params.pkl'): # path_rnn = self.model_dir + '/rnn_params.pkl' # path_coma = self.model_dir + '/critic_params.pkl' # self.eval_rnn.load_state_dict(torch.load(path_rnn)) # self.eval_critic.load_state_dict(torch.load(path_coma)) # print('Successfully load the model: {} and {}'.format(path_rnn, path_coma)) # 让target_net和eval_net的网络参数相同 self.target_critic.load_state_dict(self.eval_critic.state_dict()) self.rnn_parameters = list(self.eval_rnn.parameters()) self.critic_parameters = list(self.eval_critic.parameters()) if args.optimizer == "RMS": self.critic_optimizer = torch.optim.RMSprop(self.critic_parameters, lr=args.lr_critic) self.rnn_optimizer = torch.optim.RMSprop(self.rnn_parameters, lr=args.lr_actor) self.args = args # 执行过程中,要为每个agent都维护一个eval_hidden # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden self.eval_hidden = None def _get_critic_input_shape(self): # state input_shape = self.state_shape # 48 # obs input_shape += self.obs_shape # 30 # agent_id input_shape += self.n_agents # 3 # 所有agent的当前动作和上一个动作 input_shape += self.n_actions * self.n_agents * 2 # 54 return input_shape def learn(self, batch, max_episode_len, train_step, epsilon): # train_step表示是第几次学习,用来控制更新target_net网络的参数 episode_num = batch['o'].shape[0] self.init_hidden(episode_num) for key in batch.keys(): # 把batch里的数据转化成tensor if key == 'u': batch[key] = torch.tensor(batch[key], dtype=torch.long) else: batch[key] = torch.tensor(batch[key], dtype=torch.float32) u, r, avail_u, terminated = batch['u'], batch['r'], batch[ 'avail_u'], batch['terminated'] mask = (1 - batch["padded"].float()).repeat( 1, 1, self.n_agents) # 用来把那些填充的经验的TD-error置0,从而不让它们影响到学习 if self.args.cuda: u = u.cuda() mask = mask.cuda() # 根据经验计算每个agent的Q值,从而跟新Critic网络。然后计算各个动作执行的概率,从而计算advantage去更新Actor。 q_values = self._train_critic( batch, max_episode_len, train_step) # 训练critic网络,并且得到每个agent的所有动作的Q值 action_prob = self._get_action_prob(batch, max_episode_len, epsilon) # 每个agent的所有动作的概率 q_taken = torch.gather(q_values, dim=3, index=u).squeeze(3) # 每个agent的选择的动作对应的Q值 pi_taken = torch.gather(action_prob, dim=3, index=u).squeeze(3) # 每个agent的选择的动作对应的概率 pi_taken[mask == 0] = 1.0 # 因为要取对数,对于那些填充的经验,所有概率都为0,取了log就是负无穷了,所以让它们变成1 log_pi_taken = torch.log(pi_taken) # 计算advantage baseline = (q_values * action_prob).sum( dim=3, keepdim=True).squeeze(3).detach() advantage = (q_taken - baseline).detach() loss = -((advantage * log_pi_taken) * mask).sum() / mask.sum() self.rnn_optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.rnn_parameters, self.args.grad_norm_clip) self.rnn_optimizer.step() # print('Training: loss is', loss.item()) # print('Training: critic params') # for params in self.eval_critic.named_parameters(): # print(params) # print('Training: actor params') # for params in self.eval_rnn.named_parameters(): # print(params) def _get_critic_inputs(self, batch, transition_idx, max_episode_len): # 取出所有episode上该transition_idx的经验 obs, obs_next, s, s_next = batch['o'][:, transition_idx], batch['o_next'][:, transition_idx],\ batch['s'][:, transition_idx], batch['s_next'][:, transition_idx] u_onehot = batch['u_onehot'][:, transition_idx] if transition_idx != max_episode_len - 1: u_onehot_next = batch['u_onehot'][:, transition_idx + 1] else: u_onehot_next = torch.zeros(*u_onehot.shape) # s和s_next是二维的,没有n_agents维度,因为所有agent的s一样。其他都是三维的,到时候不能拼接,所以要把s转化成三维的 s = s.unsqueeze(1).expand(-1, self.n_agents, -1) s_next = s_next.unsqueeze(1).expand(-1, self.n_agents, -1) episode_num = obs.shape[0] # 因为coma的critic用到的是所有agent的动作,所以要把u_onehot最后一个维度上当前agent的动作变成所有agent的动作 u_onehot = u_onehot.view( (episode_num, 1, -1)).repeat(1, self.n_agents, 1) u_onehot_next = u_onehot_next.view( (episode_num, 1, -1)).repeat(1, self.n_agents, 1) if transition_idx == 0: # 如果是第一条经验,就让前一个动作为0向量 u_onehot_last = torch.zeros_like(u_onehot) else: u_onehot_last = batch['u_onehot'][:, transition_idx - 1] u_onehot_last = u_onehot_last.view( (episode_num, 1, -1)).repeat(1, self.n_agents, 1) inputs, inputs_next = [], [] # 添加状态 inputs.append(s) inputs_next.append(s_next) # 添加obs inputs.append(obs) inputs_next.append(obs_next) # 添加所有agent的上一个动作 inputs.append(u_onehot_last) inputs_next.append(u_onehot) # 添加当前动作 ''' 因为coma对于当前动作,输入的是其他agent的当前动作,不输入当前agent的动作,为了方便起见,每次虽然输入当前agent的 当前动作,但是将其置为0相量,也就相当于没有输入。 ''' action_mask = (1 - torch.eye(self.n_agents)) # th.eye()生成一个二维对角矩阵 # 得到一个矩阵action_mask,用来将(episode_num, n_agents, n_agents * n_actions)的actions中每个agent自己的动作变成0向量 action_mask = action_mask.view(-1, 1).repeat(1, self.n_actions).view( self.n_agents, -1) inputs.append(u_onehot * action_mask.unsqueeze(0)) inputs_next.append(u_onehot_next * action_mask.unsqueeze(0)) # 添加agent编号对应的one-hot向量 ''' 因为当前的inputs三维的数据,每一维分别代表(episode编号,agent编号,inputs维度),直接在后面添加对应的向量 即可,比如给agent_0后面加(1, 0, 0, 0, 0),表示5个agent中的0号。而agent_0的数据正好在第0行,那么需要加的 agent编号恰好就是一个单位矩阵,即对角线为1,其余为0 ''' inputs.append( torch.eye(self.n_agents).unsqueeze(0).expand(episode_num, -1, -1)) inputs_next.append( torch.eye(self.n_agents).unsqueeze(0).expand(episode_num, -1, -1)) # 要把inputs中的5项输入拼起来,并且要把其维度从(episode_num, n_agents, inputs)三维转换成(episode_num * n_agents, inputs)二维 inputs = torch.cat( [x.reshape(episode_num * self.n_agents, -1) for x in inputs], dim=1) inputs_next = torch.cat( [x.reshape(episode_num * self.n_agents, -1) for x in inputs_next], dim=1) return inputs, inputs_next def _get_q_values(self, batch, max_episode_len): episode_num = batch['o'].shape[0] q_evals, q_targets = [], [] for transition_idx in range(max_episode_len): inputs, inputs_next = self._get_critic_inputs( batch, transition_idx, max_episode_len) if self.args.cuda: inputs = inputs.cuda() inputs_next = inputs_next.cuda() # 神经网络输入的是(episode_num * n_agents, inputs)二维数据,得到的是(episode_num * n_agents, n_actions)二维数据 q_eval = self.eval_critic(inputs) q_target = self.target_critic(inputs_next) # 把q值的维度重新变回(episode_num, n_agents, n_actions) q_eval = q_eval.view(episode_num, self.n_agents, -1) q_target = q_target.view(episode_num, self.n_agents, -1) q_evals.append(q_eval) q_targets.append(q_target) # 得的q_evals和q_targets是一个列表,列表里装着max_episode_len个数组,数组的的维度是(episode个数, n_agents,n_actions) # 把该列表转化成(episode个数, max_episode_len, n_agents,n_actions)的数组 q_evals = torch.stack(q_evals, dim=1) q_targets = torch.stack(q_targets, dim=1) return q_evals, q_targets def _get_actor_inputs(self, batch, transition_idx): # 取出所有episode上该transition_idx的经验,u_onehot要取出所有,因为要用到上一条 obs, u_onehot = batch['o'][:, transition_idx], batch['u_onehot'][:] episode_num = obs.shape[0] inputs = [] inputs.append(obs) # 给inputs添加上一个动作、agent编号 if self.args.last_action: if transition_idx == 0: # 如果是第一条经验,就让前一个动作为0向量 inputs.append(torch.zeros_like(u_onehot[:, transition_idx])) else: inputs.append(u_onehot[:, transition_idx - 1]) if self.args.reuse_network: # 因为当前的inputs三维的数据,每一维分别代表(episode编号,agent编号,inputs维度),直接在dim_1上添加对应的向量 # 即可,比如给agent_0后面加(1, 0, 0, 0, 0),表示5个agent中的0号。而agent_0的数据正好在第0行,那么需要加的 # agent编号恰好就是一个单位矩阵,即对角线为1,其余为0 inputs.append( torch.eye(self.args.n_agents).unsqueeze(0).expand( episode_num, -1, -1)) # 要把inputs中的三个拼起来,并且要把episode_num个episode、self.args.n_agents个agent的数据拼成40条(40,96)的数据, # 因为这里所有agent共享一个神经网络,每条数据中带上了自己的编号,所以还是自己的数据 inputs = torch.cat( [x.reshape(episode_num * self.args.n_agents, -1) for x in inputs], dim=1) # TODO 检查inputs_next是不是相当于inputs向后移动一条 return inputs def _get_action_prob(self, batch, max_episode_len, epsilon): episode_num = batch['o'].shape[0] avail_actions = batch[ 'avail_u'] # coma不用target_actor,所以不需要最后一个obs的下一个可执行动作 action_prob = [] for transition_idx in range(max_episode_len): inputs = self._get_actor_inputs( batch, transition_idx) # 给obs加last_action、agent_id if self.args.cuda: inputs = inputs.cuda() self.eval_hidden = self.eval_hidden.cuda() outputs, self.eval_hidden = self.eval_rnn( inputs, self.eval_hidden ) # inputs维度为(40,96),得到的q_eval维度为(40,n_actions) # 把q_eval维度重新变回(8, 5,n_actions) outputs = outputs.view(episode_num, self.n_agents, -1) prob = torch.nn.functional.softmax(outputs, dim=-1) action_prob.append(prob) # 得的action_prob是一个列表,列表里装着max_episode_len个数组,数组的的维度是(episode个数, n_agents,n_actions) # 把该列表转化成(episode个数, max_episode_len, n_agents,n_actions)的数组 action_prob = torch.stack(action_prob, dim=1).cpu() action_num = avail_actions.sum(dim=-1, keepdim=True).float().repeat( 1, 1, 1, avail_actions.shape[-1]) # 可以选择的动作的个数 action_prob = ((1 - epsilon) * action_prob + torch.ones_like(action_prob) * epsilon / action_num) action_prob[avail_actions == 0] = 0.0 # 不能执行的动作概率为0 # 因为上面把不能执行的动作概率置为0,所以概率和不为1了,这里要重新正则化一下。执行过程中Categorical会自己正则化。 action_prob = action_prob / action_prob.sum(dim=-1, keepdim=True) # 因为有许多经验是填充的,它们的avail_actions都填充的是0,所以该经验上所有动作的概率都为0,在正则化的时候会得到nan。 # 因此需要再一次将该经验对应的概率置为0 action_prob[avail_actions == 0] = 0.0 if self.args.cuda: action_prob = action_prob.cuda() return action_prob def init_hidden(self, episode_num): # 为每个episode中的每个agent都初始化一个eval_hidden self.eval_hidden = self.eval_rnn.init_hidden().unsqueeze(0).expand( episode_num, self.n_agents, -1) def _train_critic(self, batch, max_episode_len, train_step): u, r, avail_u, terminated = batch['u'], batch['r'], batch[ 'avail_u'], batch['terminated'] u_next = u[:, 1:] padded_u_next = torch.zeros(*u[:, -1].shape, dtype=torch.long).unsqueeze(1) u_next = torch.cat((u_next, padded_u_next), dim=1) mask = (1 - batch["padded"].float()).repeat( 1, 1, self.n_agents) # 用来把那些填充的经验的TD-error置0,从而不让它们影响到学习 if self.args.cuda: u = u.cuda() u_next = u_next.cuda() mask = mask.cuda() # 得到每个agent对应的Q值,维度为(episode个数, max_episode_len, n_agents,n_actions) # q_next_target为下一个状态-动作对应的target网络输出的Q值,没有包括reward q_evals, q_next_target = self._get_q_values(batch, max_episode_len) q_values = q_evals.clone() # 在函数的最后返回,用来计算advantage从而更新actor # 取每个agent动作对应的Q值,并且把最后不需要的一维去掉,因为最后一维只有一个值了 q_evals = torch.gather(q_evals, dim=3, index=u).squeeze(3) q_next_target = torch.gather(q_next_target, dim=3, index=u_next).squeeze(3) targets = td_lambda_target(batch, max_episode_len, q_next_target.cpu(), self.args) if self.args.cuda: targets = targets.cuda() td_error = targets.detach() - q_evals masked_td_error = mask * td_error # 抹掉填充的经验的td_error # 不能直接用mean,因为还有许多经验是没用的,所以要求和再比真实的经验数,才是真正的均值 loss = (masked_td_error**2).sum() / mask.sum() # print('Loss is ', loss) self.critic_optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.critic_parameters, self.args.grad_norm_clip) self.critic_optimizer.step() if train_step > 0 and train_step % self.args.target_update_cycle == 0: self.target_critic.load_state_dict(self.eval_critic.state_dict()) return q_values def save_model(self, train_step): num = str(train_step // self.args.save_cycle) if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) torch.save(self.eval_critic.state_dict(), self.model_dir + '/' + num + '_critic_params.pkl') torch.save(self.eval_rnn.state_dict(), self.model_dir + '/' + num + '_rnn_params.pkl')
class COMA: def __init__(self, args): self.n_agents = args.n_agents self.n_actions = args.n_actions self.obs_shape = args.obs_shape actor_input_shape = self.obs_shape # Actor Network (RNN) if args.last_action: actor_input_shape += self.n_actions if args.reuse_networks: actor_input_shape += self.n_agents self.eval_rnn = RNN(actor_input_shape, args) print('Init Algo Coma') self.eval_critic = ComaCritic(args) self.target_critic = ComaCritic(args) if args.use_cuda and torch.cuda.is_available(): self.device = torch.device("cuda:0") self.eval_rnn.to(self.device) self.eval_critic.to(self.device) self.target_critic.to(self.device) else: self.device = torch.device("cpu") self.target_critic.load_state_dict(self.eval_critic.state_dict()) self.rnn_parameters = list(self.eval_rnn.parameters()) self.critic_parameters = list(self.eval_critic.parameters()) self.critic_optimizer = torch.optim.Adam(self.critic_parameters, lr=args.critic_lr) self.rnn_optimizer = torch.optim.Adam(self.rnn_parameters, lr=args.actor_lr) self.args = args self.loss_func = torch.nn.MSELoss() self.eval_hidden = None def learn(self, batch, max_episode_len, train_step, epsilon): bs = batch['o'].shape[0] self.init_hidden(bs) for key in batch.keys(): if key == 'u': batch[key] = torch.tensor(batch[key], dtype=torch.long) else: batch[key] = torch.tensor(batch[key], dtype=torch.float32) u, r, terminated = batch['u'], batch['r'], batch['terminated'] if self.args.use_cuda: u = u.to(self.device) critic_rets = self._train_critic(batch, train_step) q_taken, q_values = [], [] for a_i, (q_eval, q_all) in zip(range(self.n_agents), critic_rets): q_taken.append(q_eval) q_values.append(q_all) q_taken = torch.stack(q_taken, dim=2).squeeze(3) q_values = torch.stack(q_values, dim=2) action_prob = self._get_action_prob(batch, max_episode_len, epsilon) pi_taken = torch.gather(action_prob, dim=3, index=u).squeeze(3) log_pi_taken = torch.log(pi_taken) # Advantage for actor(policy) optimization baseline = (q_values * action_prob).sum( dim=3, keepdim=True).squeeze(3).detach() advantage = (q_taken - baseline).detach() loss = -(advantage * log_pi_taken).mean() self.rnn_optimizer.zero_grad() disable_gradients(self.eval_critic) loss.backward() enable_gradients(self.eval_critic) torch.nn.utils.clip_grad_norm_(self.rnn_parameters, self.args.grad_norm_clip) self.rnn_optimizer.step() def _train_critic(self, batch, train_step): """ Unlike the qmix or vdn which seems like q_learning to choose the argmax Q values as the q_targets COMA is someway like the MADDPG or DDPG algorithm which is deterministic policy gradient method So it requires the deterministic next action infos as 'u_next' :return: [n_agents * [(bs, episode_limit, 1), (bs, episode_limit, n_actions)]] """ r, terminated = batch['r'], batch['terminated'] if self.args.use_cuda: r = r.to(self.device) terminated = terminated.to(self.device) critic_in, target_critic_in = self._get_critic_inputs(batch) q_targets = self.target_critic( target_critic_in) # n_agents * (bs, episode_limit, 1) critic_rets = self.eval_critic(critic_in, return_all_q=True) q_loss = 0 for a_i, q_target, (q_eval, q_all) in zip(range(self.n_agents), q_targets, critic_rets): target = r + self.args.gamma * q_target * (1 - terminated) q_loss += self.loss_func(target, q_eval) self.critic_optimizer.zero_grad() q_loss.backward() self.eval_critic.scale_shared_grads() torch.nn.utils.clip_grad_norm_( self.eval_critic.parameters(), self.args.grad_norm_clip * self.n_agents) self.critic_optimizer.step() if train_step > 0 and train_step % self.args.target_update_cycle == 0: self.target_critic.load_state_dict(self.eval_critic.state_dict()) return critic_rets def _get_critic_inputs(self, batch): """ The COMA algorithm handle the critic inputs with total steps (without transition_idx) """ obs, obs_next = batch['o'], batch[ 'o_next'] # (bs, episode_limit, n_agents, obs_shape) u_onehot = batch[ 'u_onehot'] # (bs, episode_limit, n_agents, n_actions) u_onehot_next = u_onehot[:, 1:] # (bs, episode_limit - 1, n_agents, n_actions) padded_next = torch.zeros(*u_onehot[:, -1].shape, dtype=torch.float32).unsqueeze( 1) # Add a step with zeros u_onehot_next = torch.cat((u_onehot_next, padded_next), dim=1) if self.args.use_cuda: obs = obs.to(self.device) obs_next = obs_next.to(self.device) u_onehot = u_onehot.to(self.device) u_onehot_next = u_onehot_next.to(self.device) agents_obs, agents_obs_next = [], [] agents_u, agents_u_next = [], [] for a_i in range(self.n_agents): agent_obs, agent_obs_next = obs[:, :, a_i], obs_next[:, :, a_i] # (bs, episode_limit, obs_shape) agent_u, agent_u_next = u_onehot[:, :, a_i], u_onehot_next[:, :, a_i] # (bs, episode_limit, n_actions) agents_obs.append(agent_obs) agents_obs_next.append(agent_obs_next) agents_u.append(agent_u) agents_u_next.append(agent_u_next) target_critic_in = list(zip(agents_obs_next, agents_u_next)) critic_in = list(zip(agents_obs, agents_u)) return critic_in, target_critic_in def _get_actor_inputs(self, batch, transition_idx): # Because the rnn agent actor network didn't initialize a target network, it requires none next infos obs, u_onehot = batch['o'][:, transition_idx], batch['u_onehot'][:] bs = obs.shape[0] # Observation inputs = [obs] if self.args.last_action: if transition_idx == 0: inputs.append(torch.zeros_like(u_onehot[:, transition_idx])) else: inputs.append(u_onehot[:, transition_idx - 1]) if self.args.reuse_networks: inputs.append( torch.eye(self.args.n_agents).unsqueeze(0).expand(bs, -1, -1)) # Since the using of GRU network, the inputs shape should be shaped as 2 dimensions inputs = torch.cat( [x.reshape(bs * self.args.n_agents, -1) for x in inputs], dim=1) return inputs def _get_action_prob(self, batch, max_episode_len, epsilon): bs = batch['o'].shape[0] # The available actions for each agent. In MPE, an agent could choose every action at any time-step. avail_actions = torch.ones_like( batch['u_onehot'] ) # (bs, episode_limit, n_agents, n_actions) --> all 1 action_prob = [] for transition_idx in range(max_episode_len): inputs = self._get_actor_inputs(batch, transition_idx) if self.args.use_cuda: inputs = inputs.to(self.device) self.eval_hidden = self.eval_hidden.to(self.device) outputs, self.eval_hidden = self.eval_rnn( inputs, self.eval_hidden) # outputs:(bs * n_agents, n_actions) outputs = outputs.view(bs, self.n_agents, -1) prob = torch.nn.functional.softmax(outputs, dim=-1) action_prob.append(prob) action_prob = torch.stack( action_prob, dim=1).cpu() # (bs, episode_limit, n_agents, n_actions) actions_num = avail_actions.sum(dim=-1, keepdim=True).float().repeat( 1, 1, 1, avail_actions.shape[-1]) action_prob = (1 - epsilon) * action_prob + torch.ones_like( action_prob) * epsilon / actions_num action_prob = action_prob / action_prob.sum(dim=-1, keepdim=True) if self.args.use_cuda: action_prob = action_prob.to(self.device) return action_prob def _td_lambda_target(self, batch, max_episode_len, q_targets): bs = batch['o'].shape[0] terminated = (1 - batch["terminated"].float()).repeat( 1, 1, self.n_agents) r = batch['r'].repeat( (1, 1, self.n_agents )) # (bs, episode_limit, 1) --> (bs, episode_limit, n_agents) n_step_returns = torch.zeros( (bs, max_episode_len, self.n_agents, max_episode_len)) for transition_idx in range(max_episode_len - 1, -1, -1): n_step_returns[:, transition_idx, :, 0] = r[:, transition_idx] + self.args.gamma *\ q_targets[:, transition_idx] * terminated[:, transition_idx] for n in range(1, max_episode_len - transition_idx): n_step_returns[:, transition_idx, :, n] = r[:, transition_idx] + self.args.gamma *\ n_step_returns[:, transition_idx + 1, :, n - 1] lambda_return = torch.zeros((bs, max_episode_len, self.n_agents)) for transition_idx in range(max_episode_len): returns = torch.zeros((bs, self.n_agents)) for n in range(1, max_episode_len - transition_idx): returns += pow(self.args.td_lambda, n - 1) * n_step_returns[:, transition_idx, :, n - 1] lambda_return[:, transition_idx] = (1 - self.args.td_lambda) * returns +\ pow(self.args.td_lambda, max_episode_len - transition_idx - 1) *\ n_step_returns[:, transition_idx, :, max_episode_len - transition_idx - 1] return lambda_return def init_hidden(self, batch_size): self.eval_hidden = torch.zeros( (batch_size, self.n_agents, self.args.rnn_hidden_dim)) def get_params(self): return { 'eval_critic': self.eval_critic.state_dict(), 'eval_rnn': self.eval_rnn.state_dict() } def load_params(self, params_dict): # Get parameters from save_dict self.eval_rnn.load_state_dict(params_dict['eval_rnn']) self.eval_critic.load_state_dict(params_dict['eval_critic']) # Copy the eval networks to target networks self.target_critic.load_state_dict(self.target_critic.state_dict())