vocab_size=dtgen.tokenizer.vocab_size) model.compile(learning_rate=0.001) model.load_checkpoint(target=target_path) if args.train: model.summary(output_path, "summary.txt") callbacks = model.get_callbacks(logdir=output_path, checkpoint=target_path, verbose=1) start_time = time.time() h = model.fit(x=dtgen.next_train_batch(), epochs=args.epochs, steps_per_epoch=dtgen.steps['train'], validation_data=dtgen.next_valid_batch(), validation_steps=dtgen.steps['valid'], callbacks=callbacks, shuffle=True, verbose=1) total_time = time.time() - start_time loss = h.history['loss'] val_loss = h.history['val_loss'] min_val_loss = min(val_loss) min_val_loss_i = val_loss.index(min_val_loss) time_epoch = (total_time / len(loss)) total_item = (dtgen.size['train'] + dtgen.size['valid']) t_corpus = "\n".join([
model.compile(learning_rate=0.001) model.load_checkpoint(target=target_path) if args.train: model.summary(output_path, "summary.txt") callbacks = model.get_callbacks(logdir=output_path, checkpoint=target_path, verbose=1) start_time = datetime.datetime.now() h = model.fit(x=ds.getNext().imgs, epochs=args.epochs, steps_per_epoch=ds.train_steps, validation_data=ds.getNext(), validation_steps=ds.valid_steps, callbacks=callbacks, shuffle=True, verbose=1) total_time = datetime.datetime.now() - start_time loss = h.history['loss'] val_loss = h.history['val_loss'] min_val_loss = min(val_loss) min_val_loss_i = val_loss.index(min_val_loss) time_epoch = (total_time / len(loss)) total_item = (len(ds.samples))