Example #1
0
def test_ntm_gradients():
    state_size = 1
    memory_shape = (5,1)
    batch_size=10
    controller_num_layers=1
    controller_hidden_size=10
    input_size=1
    n_batches=20
    T=2
    controller_network = MLP((input_size, memory_shape[1]),
                             controller_num_layers, controller_hidden_size,
                             state_size)


    x = tf.placeholder(tf.float32, [batch_size, T, input_size])
    x_ = np.random.randn(batch_size*n_batches, T, input_size)
    y_ = 2*x_ + 1.
    addr = ShortcircuitAddressing(memory_shape, batch_size)
    rh = ReadHead(state_size, memory_shape, addresser=addr, batch_size=batch_size,
                  hidden_size=2)
    #ntm_cell = NTMCell(controller_network, memory_shape, batch_size,
    #                   read_head=rh)
    ntm_cell = NTMCell(controller_network, memory_shape, batch_size)
    ntm = Network(ntm_cell, x)
    loss = lambda a, b: tf.nn.l2_loss(a - b)
    optimizer = tf.train.GradientDescentOptimizer(1e-4)
    ntm.compile(loss, optimizer)
    ntm.train(x_, y_, batch_size=batch_size, n_epochs=2)
Example #2
0
def test_rnn():
    input_size = 1
    output_size = 1
    T = 10
    n_batches = 5
    batch_size = 5
    cell = RNNLayer(input_size, output_size, batch_size)
    x = tf.placeholder(tf.float32, [batch_size, T, input_size])
    y = tf.placeholder(tf.float32, [batch_size, T, output_size])
    network = Network(cell, x)
    x_ = np.random.randn(batch_size, T, input_size)
    y_ = 2*x_ + 1
    optimizer = tf.train.GradientDescentOptimizer(1e-4)
    loss = lambda a, b: tf.reduce_mean(tf.pow(a - b, 2))
    #loss = tf.reduce_mean(tf.pow(network.output()[0] - y, 2))
    network.compile(loss, optimizer)
    losses = network.train(x_, y_, batch_size=batch_size, verbose=False)