def train_network(X, Y, epochs=1, train=True, filename=None, load_model=False, finetune=False, task_id=None, independent=False):
    global model, history
    if load_model:
        print('Loading model')
        input_model = open(filename[0], 'r')
        model = model_from_json(input_model.read())

        input_model.close()
        model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
        model.load_weights(filename[1])
        print('Loaded(probably)')
        if finetune:
            lastLayer = None
            print(model.layers[0].__dict__)
            for layer in model.layers:
                if (layer.name == 'dense_1'):
                    nn.conv = layer
                lastLayer = layer
            import h5py

    if not load_model or finetune:
        X, Y, _ = transform_data(X, Y, task_id)
        print('Labels shape: ' + str(Y.shape))
        print('Labels look like this : ')
        print(Y[0])
        if not finetune:
            nn.construct_model(X[0].shape)

        nn.add_new_task(len(Y[0]), independent)
        model = nn.get_model().model

    if train:

        print('Training started')
        input_model = open(filename[0], 'w')
        input_model.write(model.to_json())
        input_model.close()
        # model.summary()
        from keras.utils.visualize_util import plot
        plot(model, to_file='model.png')

        print('Fitting')
        history = nn.get_model().fit(X, Y, epoch=epochs)
        task_dims.append(Y.shape[1])

        print('Training end')
        if filename is not None:
            input_model = open(filename[0], 'w')
            input_model.write(model.to_json())
            input_model.close()

            model.save_weights(filename[1], overwrite=True)
Example #2
0
    def process_train(self):
        tf.reset_default_graph()
        X = tf.placeholder(shape=[None, 784], dtype=tf.float32, name="X")
        Y = tf.placeholder(shape=[None, 10], dtype=tf.float32, name="Y")
        model = get_model(X, apply_dropout=True)
        loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y,
                                                          logits=model)
        opt = tf.train.AdamOptimizer(0.001).minimize(loss)

        with tf.Session() as sess:

            if tf.train.checkpoint_exists(self.last_model + self.checkpoint):
                tf.train.Saver().restore(sess,
                                         self.last_model + self.checkpoint)
            else:
                tf.global_variables_initializer().run()

            batches = self.data.get_number_of_train_batches(self.batch_size)
            for batch in range(batches):

                x, y = self.data.get_next_train_batch(self.batch_size)
                res1, res2 = sess.run([loss, opt], feed_dict={X: x, Y: y})

                print("\rBatch: {}/{} | Loss: {:.5f}".format(
                    batch + 1, batches, res1.mean()),
                      end="")

            save_path = tf.train.Saver().save(
                sess, self.last_model + self.checkpoint)
        print("\r")
def evaluate_accuracy(task_id, dificulty, errors=False, outputFile='result.txt', silent=False):
    if not silent:
        print('reading and processing testing data')
    X, Y = read_data(training=False, task_id=task_id, difficulty=dificulty)
    if not silent:
        print("Getting representation")
    # representation = _classifier.get_representation(task_id)
    # if representation is None:
    #        representation = _classifier.default_representation(Y)
    Y = _classifier.labels_remove_twos(Y)
    representation = _classifier.find_representation(Y)

    print('Representation for accuracy: ', representation)
    if not silent:
        print('read')
        print('predicting..')

    raw_predicted = nn.get_model(tasks_encoded[(task_id, dificulty)]).predict(X)
    
    # _classifier.print_labels(raw_predicted[:5])
    predicted = _classifier.get_normal_output(raw_predicted, representation)
    # print(predicted.shape)
    acc = accuracy(predicted, Y, raw_predicted, errors)
    print('Accuracy %.4f' % acc)
    return acc
Example #4
0
def train(args):
    model = get_model(pretrained=True)
    criterion = torch.nn.MSELoss(reduction='sum')
    if (args.optimizer == 'sgd'):
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=args.lr,
                                    momentum=args.momentum)
    elif (args.optimizer == 'adam'):
        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=args.lr,
                                     weight_decay=args.weight_decay)

    train_dataset = H_dataset(args.datasets, train=True)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch,
                                               shuffle=True,
                                               num_workers=args.num_workers)

    val_dataset = H_dataset(args.datasets, train=False)
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=args.batch,
                                             shuffle=False,
                                             num_workers=args.num_workers)

    gpus = args.gpus
    if (len(gpus) > 0):
        model = model.cuda()  # It doesn't support multi-card training now.

    for epoch in range(args.epoch):
        train_loss = 0
        for step, (image_pairs, labels) in enumerate(train_loader):
            if (len(gpus) > 0):
                image_pairs = image_pairs.cuda()
                labels = labels.cuda()
            pred = model(image_pairs)
            loss = criterion(pred, labels)
            train_loss += loss.data
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()
            if (step % 50 == 0):
                print("Epoch: %d | Step: %d | Train Loss: %f " %
                      (epoch, step, train_loss / (step + 1)))

        val_loss = 0
        print("Testing----------")
        for step, (image_pairs, labels) in enumerate(val_loader):
            if (len(gpus) > 0):
                image_pairs = image_pairs.cuda()
                labels = labels.cuda()
            pred = model(image_pairs)
            loss = criterion(pred, labels)
            val_loss += loss.data
        train_loss = train_loss / (len(train_loader))
        val_loss = val_loss / (len(val_loader))
        print("Epoch: %d | Train Loss: %f | Val Loss: %f " %
              (epoch, train_loss, val_loss))

        torch.save(model.state_dict(), "checkpoints/" + str(epoch) + ".pkl")
def model_statistics_on_task(task_id, difficulty, epochs):
    # train for 1
    X_, Y = read_data(task_id=task_id, difficulty=difficulty)
    X_, Y, _ = transform_data(X_, Y, task_id)
    nn.construct_model(X_[0].shape)
    nn.add_new_task(len(Y[0]))

    model = nn.get_model().model
    X = nn.get_model().make_input(X_)

    tasks_encoded[(task_id, difficulty)] = len(nn.tasks) - 1
    acc_history = []
    for epoch in range(epochs + 1):
        print('Epoch #', epoch)
        if epoch > 0:
            model.fit(X, Y, nb_epoch=1)
        acc_history.append(evaluate_accuracy(task_id, difficulty, silent=True))
    return acc_history
Example #6
0
def test(args):
    if (args.mode == 'cnn'):
        val_dataset = H_dataset(args.datasets, train=False)
        val_loader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=args.batch,
                                                 shuffle=False,
                                                 num_workers=args.num_workers)
        model = get_model(pretrained=True)
        model.load_state_dict(torch.load(args.model))
        model.cuda()
        val_loss = 0
        # print(len(val_loader))
        for step, (image_pairs, labels) in enumerate(val_loader):
            if (len(args.gpus) > 0):
                image_pairs = image_pairs.cuda()
                labels = labels.cuda()
            pred = model(image_pairs)
            loss = metric(pred.cpu().data.numpy(), labels.cpu().data.numpy())
            val_loss += loss
        val_loss = val_loss / (len(val_loader))
        print("CNN average corner error: ", val_loss)
    else:
        val_dataset = H_dataset(args.datasets, train=False, norm=False)
        val_loader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=args.batch,
                                                 shuffle=False,
                                                 num_workers=args.num_workers)
        success = 0
        val_loss = 0
        for step, (image_pairs, labels) in enumerate(val_loader):
            try:
                H = sift_ransac(image_pairs[0].cpu().numpy())

                if (H is not None):
                    success += 1
                    corners = np.zeros((image_pairs.size(0), 4, 2),
                                       dtype=np.float32)
                    corners[:, 0, :] = 0
                    corners[:, 1, 0] = 128
                    corners[:, 1, 1] = 0
                    corners[:, 2, 0] = 0
                    corners[:, 2, 1] = 128
                    corners[:, 3, :] = 128
                    corners = corners.reshape(-1, 2)
                    pred = H_transform(corners, H)
                    loss = metric(pred, labels.cpu().data.numpy())
                    val_loss += loss
                    # print(loss)
            except:
                pass
                # break
        val_loss = val_loss / success
        print("SIFT average corner error: ", val_loss)
Example #7
0
def predict():
    is_training = False
    
    with tf.device('/gpu:'+str(gpu_to_use)):
        images_ph, edges_ph = placeholder_inputs()
        is_training_ph = tf.placeholder(tf.bool, shape=())

        # simple model
        edge_logits = model.get_model(images_ph, is_training=is_training_ph)
        loss = model.get_loss(edge_logits, edges_ph)

    # Add ops to save and restore all the variables.
    saver = tf.train.Saver()

    # Later, launch the model, use the saver to restore variables from disk, and
    # do some work with the model.
    
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True

    with tf.Session(config=config) as sess:
        if not os.path.exists(output_dir):
            os.mkdir(output_dir)

        flog = open(os.path.join(output_dir, 'log.txt'), 'w')

        # Restore variables from disk.
        ckpt_dir = './train_results/trained_models'
        if not load_checkpoint(ckpt_dir, sess):
            sess.run(tf.global_variables_initializer())

        if not os.path.exists('data/mv-rnn'):
            os.makedirs('data/mv-rnn')
        for l in range(len(TESTING_FILE_LIST)):
            images = np.zeros((1, NUM_VIEWS, IMAGE_SIZE, IMAGE_SIZE, 1))
            model_name = TESTING_FILE_LIST[l]
            if not os.path.exists('data/mv-rnn/' + model_name):
                os.makedirs('data/mv-rnn/' + model_name)
            for v in range(NUM_VIEWS):
                images[0, v, :, :, 0] = np.array(scipy.ndimage.imread('data/rgb/' + model_name + '/RGB-' + str(v).zfill(3) + '.png', mode = 'L'), dtype=np.float32)
            edge_logits_val = sess.run(edge_logits, feed_dict={images_ph: images, is_training_ph: is_training})
            edges = sigmoid(edge_logits_val)
            for v in range(NUM_VIEWS):
                scipy.misc.imsave('data/mv-rnn' + '/' + model_name + '/MV-RNN-' + str(v).zfill(3) + '.png', edges[0, v, :, :, 0])

            printout(flog, '[%2d/%2d] model %s' % ((l+1), len(TESTING_FILE_LIST), TESTING_FILE_LIST[l]))
            printout(flog, '----------')
Example #8
0
def main():
    device = torch.device(
        "cuda:0" if torch.cuda.is_available() else "cpu")

    # Build model architecture
    num_channels = 3
    model_name = "resnet152"
    im_size = 224
    num_classes = 1000
    model = network.get_model(name=model_name,
                                          pretrained=True)
    model.to(device)

    test_loader = get_data_loader()

    evaluate(model, test_loader, device)
def get_original_output(task_id, difficulty):
    X, Y = read_data(training=False, task_id=task_id, difficulty=difficulty)
    Y = _classifier.labels_remove_twos(Y)
    representation = _classifier.find_representation(Y)
    raw_predicted = nn.get_model(tasks_encoded[(task_id, difficulty)]).predict(X)
    predicted = _classifier.get_normal_output(raw_predicted, representation)

    def transform_single_label(label, how):
        i = 0
        new = []
        for id in range(len(how)):
            if how[id]==2:
                new.append(0)
            else:
                new.append(label[i])
                i  += 1
        return how
    return list(map(lambda label: transform_single_label(label, Y[0]), predicted))
def CNN_stitch(images, trained_model):
    imageA = images[0]
    imageB = images[1]

    model = get_model(pretrained=True)
    model.load_state_dict(torch.load(trained_model))

    min_w = min(imageB.shape[0], imageB.shape[1])
    scale = min_w / 128.
    imageA = imageA[imageA.shape[0]//2-min_w//2:imageA.shape[0]//2+min_w//2,\
        imageA.shape[1]//2-min_w//2:imageA.shape[1]//2+min_w//2]
    imageB = imageB[imageB.shape[0]//2-min_w//2:imageB.shape[0]//2+min_w//2,\
        imageB.shape[1]//2-min_w//2:imageB.shape[1]//2+min_w//2]

    imageA_gray = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)
    imageB_gray = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY)
    imageA_gray = cv2.resize(imageA_gray, (128, 128))
    imageB_gray = cv2.resize(imageB_gray, (128, 128))
    # cv2.imwrite("a.jpg",imageA_gray)
    # cv2.imwrite("b.jpg",imageB_gray)

    a = imageA_gray.astype(np.float32)
    b = imageB_gray.astype(np.float32)
    a = (a - 127.5) / 127.5
    b = (b - 127.5) / 127.5
    x = np.zeros((1, 3, 128, 128), dtype=np.float32)
    x[0, 0, :, :] = a
    x[0, 1, :, :] = b
    x = torch.from_numpy(x)
    result = model(x).data.numpy()[0] * 128 * scale
    print(result)
    # print(result*128)

    imageCorners = np.array([[0, 0], [min_w, 0], [0, min_w], [min_w, min_w]])
    imagePerturbedCorners = np.array([[0+result[0],0+result[1]],[min_w+result[2],0+result[3]],\
        [0+result[4],min_w+result[5]],[min_w+result[6],min_w+result[7]]])
    H = cv2.getPerspectiveTransform(np.float32(imageCorners), \
        np.float32(imagePerturbedCorners))
    print(H)
    result = cv2.warpPerspective(
        imageA, H, (imageA.shape[1] + imageB.shape[1], imageB.shape[0]))
    result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB

    return result
Example #11
0
    def process_test(self):
        results = []
        tf.reset_default_graph()
        X = tf.placeholder(shape=[None, 784], dtype=tf.float32, name="X")
        Y = tf.placeholder(shape=[None, 10], dtype=tf.float32, name="Y")
        model = get_model(X, apply_dropout=False)
        res = tf.equal(tf.argmax(model, 1), tf.argmax(Y, 1))
        res = tf.cast(res, tf.float32)

        with tf.Session() as sess:
            tf.train.Saver().restore(sess, self.last_model + self.checkpoint)
            batches = self.data.get_number_of_test_batches(self.batch_size)
            for batch in range(batches):

                x, y = self.data.get_next_test_batch(self.batch_size)

                results.append(sess.run(res, feed_dict={X: x, Y: y}))

                print("\rBatch: {}/{}".format(batch + 1, batches), end="")

        return np.array(results).mean()
def evaluate_accuracy(task_id, difficulty, errors=False, outputFile='result.txt'):
    print('reading and processing testing data')
    X, Y = read_data(training=False, task_id=task_id, difficulty=difficulty)
    print("Getting representation")

    print('read')
    Y = _classifier.labels_remove_twos(Y)
    print('predicting..')
    representation = _classifier.find_representation(Y)

    if (task_id, difficulty) in tasks.keys():
        model = nn.get_model(tasks[(task_id, difficulty)])
    else:
        raise Exception('Task unknown')
        return

    raw_predicted = model.predict(X, verbose=1)
    
    predicted = _classifier.get_normal_output(raw_predicted, representation)
    acc = accuracy(predicted, Y, raw_predicted, errors)
    print('Accuracy %.4f' % acc)
    return acc
Example #13
0
def main(argv):
    load_checkpoint = False
    training_data_path = '../TrainingData/ideal_dchg.csv'

    try:
        opts, args = getopt.getopt(argv, "hrd:", ["help", "resume", "data="])
    except getopt.GetoptError:
        print('main.py \n -r to load latest checkpoint')
        sys.exit(2)
    for opt, arg in opts:
        if opt in ("-h", "--help"):
            print('main.py \n -r to load latest checkpoint')
            sys.exit()
        elif opt in ("-r", "--resume"):
            load_checkpoint = True
        elif opt in ("-d", "--data"):
            training_data_path = arg

    # Get an example model
    model = network.get_model(layer_count=2,
                              neurons_per_layer=16,
                              use_bias=True)

    if load_checkpoint:
        model.load_weights(CHECKPOINT_NAME)

    # Train the model
    trainModel(training_data_path=training_data_path,
               omit_saturated=True,
               epochs=100,
               batch_size=64,
               save_best=False,
               early_stopping=False,
               tensorboard=False,
               patience=8,
               model=model)
Example #14
0
def train():
    with tf.Graph().as_default():
        with tf.device('/gpu:' + str(FLAGS.gpu)):
            images_ph, edges_ph = placeholder_inputs()
            is_training_ph = tf.placeholder(tf.bool, shape=())

            queue = tf.FIFOQueue(capacity=10*batch_size, dtypes=[tf.float32, tf.float32],\
                                                         shapes=[[NUM_VIEWS, IMAGE_SIZE, IMAGE_SIZE, 1], [NUM_VIEWS, IMAGE_SIZE, IMAGE_SIZE, 1]])
            enqueue_op = queue.enqueue([images_ph, edges_ph])
            dequeue_images_ph, dequeue_edges_ph = queue.dequeue_many(
                batch_size)

            # model and loss
            edge_logits = model.get_model(dequeue_images_ph,
                                          is_training=is_training_ph)
            loss = model.get_loss(edge_logits, dequeue_edges_ph)

            # optimization
            total_var = tf.trainable_variables()
            train_step = tf.train.AdamOptimizer(
                learning_rate=LEARNING_RATE).minimize(loss, var_list=total_var)

        # write logs to the disk
        flog = open(os.path.join(LOG_STORAGE_PATH, 'log.txt'), 'w')

        saver = tf.train.Saver()

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        sess = tf.Session(config=config)

        ckpt_dir = './train_results/trained_models'
        if not load_checkpoint(ckpt_dir, sess):
            sess.run(tf.global_variables_initializer())

        train_writer = tf.summary.FileWriter(SUMMARIES_FOLDER + '/train',
                                             sess.graph)
        test_writer = tf.summary.FileWriter(SUMMARIES_FOLDER + '/test')

        fcmd = open(os.path.join(LOG_STORAGE_PATH, 'cmd.txt'), 'w')
        fcmd.write(str(FLAGS))
        fcmd.close()

        def train_one_epoch(epoch_num):
            is_training = True

            num_data = len(TRAINING_FILE_LIST)
            num_batch = num_data // batch_size
            loss_acc = 0.0
            display_mark = max([num_batch // 4, 1])
            for i in range(num_batch):
                _, loss_val = sess.run([train_step, loss],
                                       feed_dict={is_training_ph: is_training})
                loss_acc += loss_val
                if ((i + 1) % display_mark == 0):
                    printout(
                        flog, 'Epoch %3d/%3d - Iter %4d/%d' %
                        (epoch_num + 1, TRAINING_EPOCHES, i + 1, num_batch))
                    printout(flog, 'total loss: %f' % (loss_acc / (i + 1)))

            loss_acc = loss_acc * 1.0 / num_batch

            printout(flog, '\tMean total Loss: %f' % loss_acc)

        if not os.path.exists(MODEL_STORAGE_PATH):
            os.mkdir(MODEL_STORAGE_PATH)

        coord = tf.train.Coordinator()
        for num_thread in range(4):
            t = StoppableThread(target=load_and_enqueue,
                                args=(sess, enqueue_op, images_ph, edges_ph))
            t.setDaemon(True)
            t.start()
            coord.register_thread(t)

        for epoch in range(TRAINING_EPOCHES):
            printout(
                flog, '\n>>> Training for the epoch %d/%d ...' %
                (epoch + 1, TRAINING_EPOCHES))

            train_one_epoch(epoch)

            if (epoch + 1) % 1 == 0:
                cp_filename = saver.save(
                    sess,
                    os.path.join(MODEL_STORAGE_PATH,
                                 'epoch_' + str(epoch + 1) + '.ckpt'))
                printout(
                    flog, 'Successfully store the checkpoint model into ' +
                    cp_filename)

            flog.flush()
        flog.close()
Example #15
0
def predict():

    with tf.device('/gpu:' + str(gpu_to_use)):
        pointgrid_ph, seg_label_ph = placeholder_inputs()
        is_training_ph = tf.placeholder(tf.bool, shape=())

        pred_seg = model.get_model(pointgrid_ph, is_training=is_training_ph)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True

    with tf.Session(config=config) as sess:
        if not os.path.exists(output_dir):
            os.mkdir(output_dir)
        flog = open(os.path.join(output_dir, 'log_test.txt'), 'w')
        # Restore variables from disk.

        if not load_checkpoint(ckpt_dir, sess):
            exit()

        is_training = False
        gt_classes = [0 for _ in range(model.NUM_CATEGORY)]
        positive_classes = [0 for _ in range(model.NUM_CATEGORY)]
        true_positive_classes = [0 for _ in range(model.NUM_CATEGORY)]
        for i in range(test_data.shape[0]):
            pc = np.squeeze(test_data[i, :, :])
            labels = np.squeeze(test_label[i, :]).astype(int)
            seg_label = model.integer_label_to_one_hot_label(labels)
            pointgrid, pointgrid_label, index = model.pc2voxel(pc, seg_label)
            pointgrid = np.expand_dims(pointgrid, axis=0)
            pointgrid_label = np.expand_dims(pointgrid_label, axis=0)
            feed_dict = {
                pointgrid_ph: pointgrid,
                seg_label_ph: pointgrid_label,
                is_training_ph: is_training,
            }
            pred_seg_val = sess.run(pred_seg, feed_dict=feed_dict)
            pred_seg_val = pred_seg_val[0, :, :, :, :, :]
            pred_point_label = model.populateOneHotSegLabel(
                pc, pred_seg_val, index)

            if purify == True:
                pre_label = pred_point_label
                for i in range(pc.shape[0]):  #one point cloud num 2500--2800
                    idx = np.argsort(np.sum((pc[i, :] - pc)**2, axis=1))
                    j, L = 0, []
                    for _ in range(knn):
                        if (idx[j] == i):
                            j += 1
                        L.append(pre_label[idx[j]])
                        j += 1
                    majority = max(set(L), key=L.count)
                    if (pre_label[i] == 0 or len(set(L)) == 1):
                        pred_point_label[i] = majority

            for j in range(pred_point_label.shape[0]):
                gt_l = int(labels[j])
                pred_l = int(pred_point_label[j])
                gt_classes[gt_l] += 1
                positive_classes[pred_l] += 1
                true_positive_classes[gt_l] += int(gt_l == pred_l)

        printout(flog, 'gt_l count:{}'.format(gt_classes))
        printout(flog, 'positive_classes count:{}'.format(positive_classes))
        printout(
            flog,
            'true_positive_classes count:{}'.format(true_positive_classes))

        iou_list = []
        for i in range(model.SEG_PART):
            try:
                iou = true_positive_classes[i] / float(
                    gt_classes[i] + positive_classes[i] -
                    true_positive_classes[i])
            except ZeroDivisionError:
                iou = 0
                print('here no room')
            finally:
                iou_list.append(iou)
        printout(flog, 'IOU:{}'.format(iou_list))
        printout(
            flog, 'ACC:{}'.format(
                sum(true_positive_classes) * 1.0 / (sum(positive_classes))))
        printout(flog, 'mIOU:{}'.format(sum(iou_list) / float(model.SEG_PART)))
Example #16
0
def main(network_name):
    num_gpu = torch.cuda.device_count()
    args = parser.parse_args()
    args.network = network_name
    print(args)
    save_path = args.save_path + '_' + args.network
    if args.need_save_checkpoint:
        if os.path.exists(save_path):
            os.system('rm -rf %s/*' % (save_path))
        else:
            os.system('mkdir %s' % (save_path))

    if args.need_save_accuracy_log:
        log_file = open('log_%s.txt' % (args.network), 'w')

    train_dataset = data_loader(args, train=True)
    test_dataset = data_loader(args, train=False)

    train_loader = data.DataLoader(dataset=train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers)

    test_loader = data.DataLoader(dataset=test_dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers)

    model = get_model(args).cuda()
    if args.need_multi_gpus:
        model = DataParallel(model, device_ids=range(num_gpu))

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    loss_func = nn.CrossEntropyLoss()
    loss_func = loss_func.cuda()

    train_total_step = len(train_loader)
    test_total_step = len(test_loader)

    for epoch in range(args.epoch):
        loss_sum = 0
        model.train()

        train_class_correct = list(0. for i in range(args.class_num))
        train_class_total = list(0. for i in range(args.class_num))

        for i, (images, label) in enumerate(train_loader):
            images = Variable(images.cuda())
            label = Variable(label.cuda())

            output = model(images)

            prediction = torch.argmax(output, 1)
            res = prediction == label
            for label_idx in range(len(label)):
                label_single = label[label_idx]
                train_class_correct[label_single] += res[label_idx].item()
                train_class_total[label_single] += 1

            loss = loss_func(output, label)
            loss_sum += loss

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if i % args.display_train_interval == 0:
                sys.stdout.write(
                    '[TRAIN net] Epoch [%d/%d], Step[%d/%d], loss:%.6f\r' %
                    (epoch + 1, args.epoch, i, train_total_step,
                     loss.cpu().data.numpy()))
        print()
        loss_mean = loss_sum / train_total_step
        if args.need_save_checkpoint:
            if args.need_multi_gpus:
                torch.save(
                    model.module.state_dict(),
                    "{}/net{}_{}.pth".format(save_path, epoch,
                                             loss_mean.cpu().data.numpy()))
            else:
                torch.save(
                    model.state_dict(),
                    "{}/net{}_{}.pth".format(save_path, epoch,
                                             loss_mean.cpu().data.numpy()))

        print('[LOSS] %f' % (loss_mean.cpu().data.numpy()))

        print()
        model.eval()
        test_class_correct = list(0. for i in range(args.class_num))
        test_class_total = list(0. for i in range(args.class_num))
        for i, (images, label) in enumerate(test_loader):
            images = Variable(images.cuda())
            label = Variable(label.cuda())
            output = model(images)

            prediction = torch.argmax(output, 1)
            res = prediction == label
            for label_idx in range(len(label)):
                label_single = label[label_idx]
                test_class_correct[label_single] += res[label_idx].item()
                test_class_total[label_single] += 1

            if i % args.display_test_interval == 0:
                sys.stdout.write('[TEST] Step[%d/%d]\r' % (i, test_total_step))

        print()
        acc_str = '[NET %s][EPOCH %3d/%3d] Train Accuracy: %f\tTest Accuracy: %f' % (
            args.network, epoch + 1, args.epoch,
            sum(train_class_correct) / sum(train_class_total),
            sum(test_class_correct) / sum(test_class_total))
        acc_str += '\t[TRAIN]\t'
        for acc_idx in range(len(train_class_correct)):
            try:
                acc = train_class_correct[acc_idx] / train_class_total[acc_idx]
            except:
                acc = 0
            finally:
                acc_str += '\taccID:%d\tacc:%f\t' % (acc_idx + 1, acc)
        acc_str += '\t[TEST]\t'
        for acc_idx in range(len(test_class_correct)):
            try:
                acc = test_class_correct[acc_idx] / test_class_total[acc_idx]
            except:
                acc = 0
            finally:
                acc_str += '\taccID:%d\tacc:%f\t' % (acc_idx + 1, acc)

        print(acc_str)
        if args.need_save_accuracy_log:
            log_file.write(acc_str + '\n')
            log_file.flush()

    if args.need_save_accuracy_log:
        log_file.close()
Example #17
0
def train():
    with tf.Graph().as_default():
        with tf.device('/gpu:' + str(FLAGS.gpu)):
            pointgrid_ph, cat_label_ph, seg_label_ph = placeholder_inputs()
            is_training_ph = tf.placeholder(tf.bool, shape=())

            queue = tf.FIFOQueue(capacity=20*batch_size, dtypes=[tf.float32, tf.float32, tf.float32],\
                                                         shapes=[[model.N, model.N, model.N, model.NUM_FEATURES],\
                                                                 [model.NUM_CATEGORY],
                                                                 [model.N, model.N, model.N, model.K+1, model.NUM_SEG_PART]])
            enqueue_op = queue.enqueue(
                [pointgrid_ph, cat_label_ph, seg_label_ph])
            dequeue_pointgrid, dequeue_cat_label, dequeue_seg_label = queue.dequeue_many(
                batch_size)

            # model
            pred_cat, pred_seg = model.get_model(dequeue_pointgrid,
                                                 is_training=is_training_ph)

            # loss
            total_loss, cat_loss, seg_loss = model.get_loss(
                pred_cat, dequeue_cat_label, pred_seg, dequeue_seg_label)

            # optimization
            total_var = tf.trainable_variables()
            step = tf.train.AdamOptimizer(
                learning_rate=LEARNING_RATE).minimize(total_loss,
                                                      var_list=total_var)

        # write logs to the disk
        flog = open(os.path.join(LOG_STORAGE_PATH, 'log.txt'), 'w')

        saver = tf.train.Saver()

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        sess = tf.Session(config=config)

        ckpt_dir = './train_results/trained_models'
        if not load_checkpoint(ckpt_dir, sess):
            sess.run(tf.global_variables_initializer())

        train_writer = tf.summary.FileWriter(SUMMARIES_FOLDER + '/train',
                                             sess.graph)
        test_writer = tf.summary.FileWriter(SUMMARIES_FOLDER + '/test')

        fcmd = open(os.path.join(LOG_STORAGE_PATH, 'cmd.txt'), 'w')
        fcmd.write(str(FLAGS))
        fcmd.close()

        def train_one_epoch(epoch_num):
            is_training = True

            num_data = len(TRAINING_FILE_LIST)
            num_batch = num_data // batch_size
            total_loss_acc = 0.0
            cat_loss_acc = 0.0
            seg_loss_acc = 0.0
            display_mark = max([num_batch // 4, 1])
            for i in range(num_batch):
                _, total_loss_val, cat_loss_val, seg_loss_val = sess.run(
                    [step, total_loss, cat_loss, seg_loss],
                    feed_dict={is_training_ph: is_training})
                total_loss_acc += total_loss_val
                cat_loss_acc += cat_loss_val
                seg_loss_acc += seg_loss_val

                if ((i + 1) % display_mark == 0):
                    printout(
                        flog, 'Epoch %d/%d - Iter %d/%d' %
                        (epoch_num + 1, TRAINING_EPOCHES, i + 1, num_batch))
                    printout(flog,
                             'Total Loss: %f' % (total_loss_acc / (i + 1)))
                    printout(
                        flog,
                        'Classification Loss: %f' % (cat_loss_acc / (i + 1)))
                    printout(
                        flog,
                        'Segmentation Loss: %f' % (seg_loss_acc / (i + 1)))

            printout(flog,
                     '\tMean Total Loss: %f' % (total_loss_acc / num_batch))
            printout(
                flog,
                '\tMean Classification Loss: %f' % (cat_loss_acc / num_batch))
            printout(
                flog,
                '\tMean Segmentation Loss: %f' % (seg_loss_acc / num_batch))

        if not os.path.exists(MODEL_STORAGE_PATH):
            os.mkdir(MODEL_STORAGE_PATH)

        coord = tf.train.Coordinator()
        for num_thread in range(16):
            t = StoppableThread(target=load_and_enqueue,
                                args=(sess, enqueue_op, pointgrid_ph,
                                      cat_label_ph, seg_label_ph))
            t.setDaemon(True)
            t.start()
            coord.register_thread(t)

        for epoch in range(TRAINING_EPOCHES):
            printout(
                flog, '\n>>> Training for the epoch %d/%d ...' %
                (epoch + 1, TRAINING_EPOCHES))

            train_one_epoch(epoch)

            if (epoch + 1) % 1 == 0:
                cp_filename = saver.save(
                    sess,
                    os.path.join(MODEL_STORAGE_PATH,
                                 'epoch_' + str(epoch + 1) + '.ckpt'))
                printout(
                    flog, 'Successfully store the checkpoint model into ' +
                    cp_filename)

            flog.flush()
        flog.close()
Example #18
0
def predict():
    is_training = False

    with tf.device('/gpu:' + str(gpu_to_use)):
        the_model_ph, cat_label_ph, seg_label_ph = placeholder_inputs()
        is_training_ph = tf.placeholder(tf.bool, shape=())

        # model
        pred_cat, pred_seg = model.get_model(the_model_ph,
                                             is_training=is_training_ph)

    # Add ops to save and restore all the variables.
    saver = tf.train.Saver()

    # Later, launch the model, use the saver to restore variables from disk, and
    # do some work with the model.

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True

    with tf.Session(config=config) as sess:
        if not os.path.exists(output_dir):
            os.mkdir(output_dir)

        flog = open(os.path.join(output_dir, 'log.txt'), 'w')

        # Restore variables from disk.
        ckpt_dir = './train_results/trained_models'
        if not load_checkpoint(ckpt_dir, sess):
            exit()

        if not os.path.exists('../data/ShapeNet/test-object'):
            os.mkdir('../data/ShapeNet/test-object')

        map_table = np.zeros((10, 10), dtype=int)
        y_true = []
        y_pred = []
        start_all = datetime.now()
        total_time = datetime.now() - datetime.now()
        incorrect = []
        preficted = []
        ccc = 0

        avg_cat_accuracy = 0.0
        cat_accuracy = np.zeros((model.NUM_CATEGORY), dtype=np.float32)
        cat_obj = np.zeros((model.NUM_CATEGORY), dtype=np.int32)
        avg_iou = 0.0
        cat_iou = np.zeros((model.NUM_CATEGORY), dtype=np.float32)
        for loop in range(len(TESTING_FILE_LIST)):
            start_one = datetime.now()
            mat_content = scipy.io.loadmat('../data/ShapeNet/test/' +
                                           TESTING_FILE_LIST[loop] + '.mat')
            pc = mat_content['points']
            labels = np.squeeze(mat_content['labels'])
            category = mat_content['category'][0][0]
            cat_label = model.integer_label_to_one_hot_label(category)
            category = int(category)
            cat_obj[category] += 1
            seg_label = model.integer_label_to_one_hot_label(labels)
            the_model, the_model_label, index = model.pc2voxel(pc, seg_label)
            the_model = np.expand_dims(the_model, axis=0)
            cat_label = np.expand_dims(cat_label, axis=0)
            the_model_label = np.expand_dims(the_model_label, axis=0)
            feed_dict = {
                the_model_ph: the_model,
                cat_label_ph: cat_label,
                seg_label_ph: the_model_label,
                is_training_ph: is_training,
            }
            pred_cat_val, pred_seg_val = sess.run([pred_cat, pred_seg],
                                                  feed_dict=feed_dict)
            pred_cat_val = np.argmax(pred_cat_val[0, :], axis=0)
            pred_seg_val = pred_seg_val[0, :, :, :, :, :]
            avg_cat_accuracy += (pred_cat_val == category)
            cat_accuracy[category] += (pred_cat_val == category)

            stop_one = datetime.now()
            print('Time: ', stop_one - start_one)
            total_time += (stop_one - start_one)
            print('total Time: ', total_time)
            y_true.insert(loop, category)
            y_pred.insert(loop, pred_cat_val)

            if pred_cat_val != category:
                incorrect.insert(ccc, TESTING_FILE_LIST[loop])
                preficted.insert(ccc, category2name[pred_cat_val])
                ccc += 1
                print(category2name[pred_cat_val])

            pred_point_label = model.populateOneHotSegLabel(
                pc, pred_seg_val, index)
            if purify == True:
                pre_label = pred_point_label
                for i in range(pc.shape[0]):
                    idx = np.argsort(np.sum((pc[i, :] - pc)**2, axis=1))
                    j, L = 0, []
                    for _ in range(knn):
                        if (idx[j] == i):
                            j += 1
                        L.append(pre_label[idx[j]])
                        j += 1
                    majority = max(set(L), key=L.count)
                    if (pre_label[i] == 0 or len(set(L)) == 1):
                        pred_point_label[i] = majority
            iou = model.intersection_over_union(pred_point_label, labels)
            avg_iou += iou
            cat_iou[category] += iou
            #if (cat_obj[category] <= 3):
            #    output_color_point_cloud(pc, pred_point_label, '../data/ShapeNet/test-object/' + category2name[category] + '_' + str(cat_obj[category]) + '.obj')
            printout(
                flog, '%d/%d %s' %
                ((loop + 1), len(TESTING_FILE_LIST), TESTING_FILE_LIST[loop]))
            printout(flog, '----------')

        avg_cat_accuracy /= float(np.sum(cat_obj))
        avg_iou /= float(np.sum(cat_obj))
        printout(flog,
                 'Average classification accuracy: %f' % avg_cat_accuracy)
        printout(flog, 'Average IoU: %f' % avg_iou)
        printout(
            flog,
            'CategoryName, CategorySize, ClassificationAccuracy, SegmentationIoU'
        )
        for i in range(model.NUM_CATEGORY):
            cat_accuracy[i] /= float(cat_obj[i])
            cat_iou[i] /= float(cat_obj[i])
            printout(
                flog, '\t%s (%d): %f, %f' %
                (category2name[i], cat_obj[i], cat_accuracy[i], cat_iou[i]))

        # Print the confusion matrix
        print(metrics.confusion_matrix(y_true, y_pred))

        # Print the precision and recall, among other metrics
        print(metrics.classification_report(y_true, y_pred, digits=3))

        stop_all = datetime.now()
        print('Time: ', stop_all - start_all)

        print(incorrect)
        print(preficted)
import pickle
import random

db = pymongo.MongoClient().maxilafacial
fileDB = gridfs.GridFS(db)

#Graph Definition
num_point = 4096
batch_size = 4

input_tensor = tf.placeholder(tf.float32,
                              shape=(None, num_point, 3),
                              name="target_input")
gt_tensor = tf.placeholder(tf.int32, shape=(None, num_point))
is_training = tf.placeholder(tf.bool, name="target_isTraining")
output_tensor = network.get_model(input_tensor, is_training)

output_data_tensor = tf.argmax(output_tensor, 2, name="target_output")
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=gt_tensor,
                                                      logits=output_tensor)
loss_op = tf.reduce_mean(loss)
#Add Regularization
regularizer = tf.add_n([
    tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bias' not in v.name
])  #
loss_op = loss_op + 0.001 * regularizer
optimizer = tf.train.AdamOptimizer(1e-4, 0.5)
train_op = optimizer.minimize(loss_op)


def shuffle_point_sequence(input_batch):
Example #20
0
def run_eval(args):
    ckpt = torch.load(args.ckpt)
    ckpt_opt = ckpt['opts']

    transformer = get_model(ckpt_opt.net)(ckpt_opt).cuda()
    transformer.load_state_dict(ckpt['transformer'])
    transformer.eval()

    up_sampler = nn.Upsample(scale_factor=2,
                             mode='bicubic',
                             align_corners=True).cuda()

    video_loader = db.HRLRDLR_VideoLoader(args,
                                          video_size=(args.size[0],
                                                      args.size[1]))
    print('Number of samples: {}'.format(len(video_loader)))

    criterionMSE = nn.MSELoss().cuda()
    counter = 0

    with torch.no_grad():
        for i in range(len(video_loader)):
            data_sample, _vname = video_loader.get_item(i)
            print('Processing ' + _vname)

            DLR_frames = data_sample['DLR']
            LR_frames = data_sample['LR']
            HR_frames = data_sample['HR']

            hr_writer = YUVWriter(os.path.join(args.out, _vname + '_HR.yuv'),
                                  (args.size[0] * 2, args.size[1] * 2))
            lr_writer = YUVWriter(os.path.join(args.out, _vname + '_LR.yuv'),
                                  (args.size[0], args.size[1]))

            errors = AverageMeters(
                args, _vname,
                ['HR-Y-PSNR', 'HR-Y-SSIM', 'LR-Y-PSNR', 'LR-Y-SSIM'])

            for frame_id in range(len(DLR_frames)):
                # Init data
                DLR = torch.autograd.Variable(
                    torch.from_numpy(DLR_frames[frame_id].transpose(
                        (2, 0, 1))).float()).unsqueeze(0).cuda() / 255.0
                LR = torch.autograd.Variable(
                    torch.from_numpy(LR_frames[frame_id].transpose(
                        (2, 0, 1))).float()).unsqueeze(0).cuda() / 255.0
                HR = torch.autograd.Variable(
                    torch.from_numpy(HR_frames[frame_id].transpose(
                        (2, 0, 1))).float()).unsqueeze(0).cuda() / 255.0

                # Inference
                res_residual_out, rec_residual_out, upsampled_lr = transformer(
                    DLR[:, 0, :, :].unsqueeze(1))

                HR_out = upsampled_lr + rec_residual_out
                HR_out = torch.cat([HR_out, up_sampler(DLR[:, 1:, :, :])], 1)

                LR_out = DLR[:, 0, :, :].unsqueeze(1) + res_residual_out
                LR_out = torch.cat([LR_out, DLR[:, 1:, :, :]], 1)

                # Evaluation
                hr_y_mse = criterionMSE(HR_out[:, 0, :, :].unsqueeze(1),
                                        HR[:, 0, :, :].unsqueeze(1))
                hr_y_psnr = 10 * log10(1 / hr_y_mse.item())
                hr_y_ssim = pytorch_ssim.ssim(HR_out[:, 0, :, :].unsqueeze(1),
                                              HR[:,
                                                 0, :, :].unsqueeze(1)).item()

                lr_y_mse = criterionMSE(LR_out[:, 0, :, :].unsqueeze(1),
                                        LR[:, 0, :, :].unsqueeze(1))
                lr_y_psnr = 10 * log10(1 / lr_y_mse.item())
                lr_y_ssim = pytorch_ssim.ssim(LR_out[:, 0, :, :].unsqueeze(1),
                                              LR[:,
                                                 0, :, :].unsqueeze(1)).item()

                errors.update([hr_y_psnr, hr_y_ssim, lr_y_psnr, lr_y_ssim])

                # CPU
                res_residual_out = res_residual_out.cpu()
                rec_residual_out = rec_residual_out.cpu()
                upsampled_lr = upsampled_lr.cpu()
                HR_out = HR_out.cpu()
                DLR = DLR.cpu()
                LR = LR.cpu()
                HR = HR.cpu()

                # Write frames
                hr_writer.write(HR_out)
                lr_writer.write(LR_out)
            # Finish
            hr_writer.close()
            lr_writer.close()

            errors.write_result()

    print('Test Completed')
Example #21
0
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='ZAQ CIFAR.')
    parser.add_argument('--num_classes', type=int, default=10)
    parser.add_argument('--batch_size', type=int, default=256, metavar='N',
                        help='input batch size for training (default: 256)')
    parser.add_argument('--test_batch_size', type=int, default=256, metavar='N',
                        help='input batch size for testing (default: 128)')
    
    parser.add_argument('--epochs', type=int, default=300, metavar='N',
                        help='number of epochs to train (default: 500)')
    parser.add_argument('--epoch_itrs', type=int, default=60)
    parser.add_argument('--lr_Q', type=float, default=0.1, metavar='LR',
                        help='learning rate (default: 0.1)')
    parser.add_argument('--lr_G', type=float, default=1e-3,
                        help='learning rate (default: 0.001)')
    parser.add_argument('--data_root', type=str, required=True, default=None)

    parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100'],
                        help='dataset name (default: cifar10)')
    parser.add_argument('--model', type=str, default='resnet18', 
                        choices=['mobilenetv2', 'vgg19', 'resnet18', 'resnet20', 'resnet50'],
                        help='model name (default: resnet18)')
    parser.add_argument('--weight_decay', type=float, default=5e-4)
    parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
                        help='SGD momentum (default: 0.9)')
    parser.add_argument('--device', type=str, default='0',
                        help='device for training')
    parser.add_argument('--seed', type=int, default=6786, metavar='S',
                        help='random seed (default: 6786)')
    parser.add_argument('--ckpt', type=str, default='')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--nz', type=int, default=256)
    parser.add_argument("--alpha", type=float, default=1)
    parser.add_argument("--beta", type=float, default=0.1)
    parser.add_argument("--gamma", type=float, default=0.1)
    parser.add_argument('--test_only', action='store_true', default=False)
    parser.add_argument('--download', action='store_true', default=False)

    # quantization 
    parser.add_argument('--weight_bit', type=int, default=6, help='bit-width for parameters')
    parser.add_argument('--activation_bit', type=int, default=8, help='bit-width for act')
    
    args = parser.parse_args()

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    
    os.environ['CUDA_VISIBLE_DEVICES'] = args.device
    args.device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
    os.makedirs('checkpoint/q_model/', exist_ok=True)
    print(args)

    _, test_loader = get_dataloader(args)

    args.num_classes = 10 if args.dataset=='cifar10' else 100
    q_model = network.get_model(args)
    generator = network.gan.Generator(nz=args.nz, nc=3, img_size=32)
    
    q_model.load_state_dict(torch.load(args.ckpt))
    print("p_model restored from %s"%(args.ckpt))

    # p_model = p_model.to(device)
    q_model = q_model.to(args.device)
    generator = generator.to(args.device)
    p_model = copy.deepcopy(q_model)

    # quantization
    q_model = quantize_model(q_model, args)
    quant_acc = test(args, q_model, test_loader, 0)
    print('Quat Acc=%0.4f \n' % quant_acc)

    p_model.eval()

    optimizer_Q = optim.SGD(q_model.parameters(), lr=args.lr_Q, weight_decay=args.weight_decay, momentum=0.9)
    optimizer_G = optim.Adam(generator.parameters(), lr=args.lr_G)
    
    scheduler_Q = optim.lr_scheduler.MultiStepLR(optimizer_Q, [100, 200], args.gamma)
    scheduler_G = optim.lr_scheduler.MultiStepLR(optimizer_G, [100, 200], args.gamma)
    best_acc = 0
    if args.test_only:
        acc = test(args, q_model, test_loader, 0)
        return
    acc_list = []
    for epoch in range(1, args.epochs + 1):
        # Train
        train(args, p_model=p_model, q_model=q_model, generator=generator, optimizer=[optimizer_Q, optimizer_G], epoch=epoch)
        scheduler_Q.step()
        scheduler_G.step()
        # Test
        acc = test(args, q_model, test_loader, epoch)
        acc_list.append(acc)
        if acc>best_acc:
            best_acc = acc
            print('Saving a best checkpoint ...')
            torch.save(q_model.state_dict(),"checkpoint/q_model/ZAQ-%s-%s-%sbit.pt"%(args.dataset, args.model, args.weight_bit))
            torch.save(generator.state_dict(),"checkpoint/q_model/ZAQ-%s-%s-%sbit-generator.pt"%(args.dataset, args.model, args.weight_bit))
        vp.add_scalar('Acc', epoch, acc)
    print("Best Acc=%.6f" % best_acc)

    import csv
    os.makedirs('log', exist_ok=True)
    with open('log/ZAQ-%s-%s-%sbit.csv'%(args.dataset, args.model, args.param_bits), 'a') as f:
        writer = csv.writer(f)
        writer.writerow(acc_list)
Example #22
0
def main():
    # Training settings
    parser = argparse.ArgumentParser('Pretrain P model.')
    parser.add_argument('--num_classes', type=int, default=10)
    parser.add_argument('--batch_size',
                        type=int,
                        default=256,
                        metavar='N',
                        help='input batch size for training (default: 256)')
    parser.add_argument('--test_batch_size',
                        type=int,
                        default=256,
                        metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--data_root', type=str, required=True, default=None)
    parser.add_argument('--epochs',
                        type=int,
                        default=200,
                        metavar='N',
                        help='number of epochs to train (default: 200)')
    parser.add_argument('--lr',
                        type=float,
                        default=0.1,
                        metavar='LR',
                        help='learning rate (default: 0.1)')
    parser.add_argument('--weight_decay', type=float, default=5e-4)
    parser.add_argument(
        '--dataset',
        type=str,
        default='mnist',
        choices=['mnist', 'cifar10', 'cifar100', 'caltech101', 'nyuv2'],
        help='dataset name (default: mnist)')
    parser.add_argument(
        '--model',
        type=str,
        default='resnet20',
        choices=['resnet18', 'resnet50', 'mobilenetv2', 'resnet20', 'vgg19'],
        help='model name (default: resnet20)')
    parser.add_argument('--step_size', type=int, default=80)
    parser.add_argument('--momentum',
                        type=float,
                        default=0.9,
                        metavar='M',
                        help='SGD momentum (default: 0.9)')
    parser.add_argument('--device',
                        type=str,
                        default='0',
                        help='device for training')
    parser.add_argument('--seed',
                        type=int,
                        default=6786,
                        metavar='S',
                        help='random seed (default: 6786)')
    parser.add_argument('--ckpt', type=str, default=None)
    parser.add_argument(
        '--log_interval',
        type=int,
        default=100,
        metavar='N',
        help='how many batches to wait before logging training status')
    parser.add_argument('--test_only', action='store_true', default=False)
    parser.add_argument('--download', action='store_true', default=False)
    parser.add_argument('--pretrained', action='store_true', default=False)
    parser.add_argument('--verbose', action='store_true', default=False)

    args = parser.parse_args()

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    os.environ['CUDA_VISIBLE_DEVICES'] = args.device
    args.device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
    os.makedirs('checkpoint/p_model/', exist_ok=True)

    print(args)

    train_loader, test_loader = get_dataloader(args)
    model = network.get_model(args)

    if args.ckpt is not None and args.pretrained:
        model.load_state_dict(torch.load(args.ckpt))

    model = model.to(args.device)
    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          weight_decay=args.weight_decay,
                          momentum=args.momentum)
    best_acc = 0
    scheduler = optim.lr_scheduler.StepLR(optimizer, args.step_size, 0.1)

    if args.test_only:
        acc = test(args, model, test_loader, 0)
        return

    for epoch in range(1, args.epochs + 1):
        # print("Lr = %.6f"%(optimizer.param_groups[0]['lr']))
        train(args, model, train_loader, optimizer, epoch)
        acc = test(args, model, test_loader, epoch)
        scheduler.step()
        if acc > best_acc:
            best_acc = acc
            print('Saving a best checkpoint ...')
            torch.save(
                model.state_dict(),
                "checkpoint/p_model/%s-%s.pt" % (args.dataset, args.model))
    print("Best Acc=%.6f" % best_acc)
Example #23
0
utils.try_make_dir(save_root)
utils.try_make_dir(log_root)

######################
#      DataLoaders
######################
train_dataloader = dl.train_dataloader
val_dataloader = dl.val_dataloader
# init log
logger = init_log(training=True)

######################
#     Init model
######################
Model = get_model(opt.model)
model = Model(opt)

# 暂时还不支持多GPU
# if len(opt.gpu_ids):
#     model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)
model = model.to(device=opt.device)

if opt.load:
    load_epoch = model.load(opt.load)
    start_epoch = load_epoch + 1 if opt.resume else 1
else:
    start_epoch = 1

model.train()
Example #24
0
from tensorflow import keras

import data
import network as nt
import show

if __name__ == '__main__':
    FILENAME_NT = 'model.h5'
    FILENAME_TRAIN_DATA = 'data/training.csv'
    FILENAME_TEST_DATA = 'data/test.csv'

    df_train = pd.read_csv(FILENAME_TRAIN_DATA)
    df_test = pd.read_csv(FILENAME_TEST_DATA)

    X_train, y_train = data.get_train_data(df_train)
    X_test = data.get_test_data(df_test)

    model = nt.get_model()

    for i in range(10):
        image = X_test[i,:,:,0]
        show.show_predicted_image_with_keypoints(model, data.PIPELINE, image)

    # images = np.array([X_train[i,:,:,0] for i in range(10)]).reshape(10, 96, 96, 1)
    # show.show_predicted_images_with_keypoints(model, data.PIPELINE, images)

    # -------------------------------------------------------------------
    # history = nt.fit_model(model, FILENAME_NT, X_train, y_train)
    # model.save(FILENAME_NT)
    # -------------------------------------------------------------------
Example #25
0
        help=
        'fork 명령어를 입력할때의 체크포인트로 설정됩니다. 체크포인트 옵션을 안주면 마지막 wall time 의 model 을 가져옵니다.'
    )
    args.add_argument('--pause',
                      type=int,
                      default=0,
                      help='model 을 load 할때 1로 설정됩니다.')
    config = args.parse_args()

    # training parameters
    nb_epoch = config.epochs
    batch_size = config.batch_size
    num_classes = 1000
    input_shape = (224, 224, 3)  # input image shape
    """ Model """
    model, base_model = get_model('triplet', 224, num_classes, opt.base_model)
    bind_model(base_model, config.batch_size)
    get_feature_layer = K.function([base_model.layers[0].input] +
                                   [K.learning_phase()],
                                   [base_model.layers[-1].output])

    if config.pause:
        nsml.paused(scope=locals())

    bTrainmode = False
    if config.mode == 'train':
        bTrainmode = True
        """ Load data """
        print('dataset path', DATASET_PATH)
        output_path = ['./img_list.pkl', './label_list.pkl']
        train_dataset_path = os.path.join(DATASET_PATH, 'train/train_data')
Example #26
0
    parser.add_argument(
        '--notify',
        type=int,
        default=100)
    args = parser.parse_args()

    cuda = torch.cuda.is_available()
    set_seed(seed=1, cuda=cuda)

    # Data
    train_loader, train_dataset, test_loader, test_dataset = get_data_loaders(
        batch_size=args.batch_size)

    # Model
    model, loss_fn, optimizer = get_model(
        num_classes=args.num_classes,
        learning_rate=args.learning_rate,
        cuda=cuda)
    start_epoch, best_accuracy = load_model(model, cuda)

    for epoch in range(start_epoch, args.epochs):
        train_model(model=model,
                    optimizer=optimizer,
                    train_loader=train_loader,
                    train_dataset=train_dataset,
                    loss_fn=loss_fn,
                    num_epochs=args.epochs,
                    epoch=epoch,
                    batch_size=args.batch_size,
                    notify=args.notify,
                    cuda=cuda)
        accuracy = eval_model(model=model, test_loader=test_loader, cuda=cuda)
Example #27
0
                                                                                  loss3))


if __name__ == '__main__':
    system_arg = parse_args()
    args = Param()
    args.load_parm(system_arg.train_config)
    args = args.get_parm()

    gluoncv.utils.random.seed(args['seed'])
    ctx = [mx.gpu(int(i)) for i in args['gpus'].split(',') if i.strip()]
    print(ctx)
    ctx = ctx if ctx else [mx.cpu()]
    net_name = '_'.join(('east', str(args['data_shape']), args['network']))
    args['save_prefix'] += net_name
    net = get_model(args['network'], text_scale=args['data_shape'])
    async_net = net
    if args['resume']:
        net.load_parameters(args['resume'])
        async_net.load_parameters(args['resume'].strip())
    else:
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            net.initialize()
            async_net.initialize()
    #for item in net.features.collect_params().items():
    #    if item[0].split('_')[-1] not in ['gamma', 'beta', 'mean', 'var']:
    #        item[1].cast('float16')

    #for item in net.features.collect_params().items():
    #    if 'mobilenet' in item[0].split('_')[1]:
Example #28
0
def main():
    opt = Options()
    args = opt.parse_command()
    opt.print_items()

    # if setting gpu id, the using single GPU
    if opt.gpu:
        print('Single GPU Mode.')
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    # set random seed
    torch.manual_seed(opt.manual_seed)
    torch.cuda.manual_seed(opt.manual_seed)
    np.random.seed(opt.manual_seed)
    random.seed(opt.manual_seed)

    cudnn.benchmark = True

    if torch.cuda.device_count() > 1:
        print('Multi-GPUs Mode.')
        print("Let's use ", torch.cuda.device_count(), " GPUs!")
    else:
        print('Single GPU Mode.')
        print("Let's use GPU:", opt.gpu)

    if opt.restore:
        assert os.path.isfile(opt.restore), \
            "=> no checkpoint found at '{}'".format(opt.restore)
        print("=> loading checkpoint '{}'".format(opt.restore))
        checkpoint = torch.load(opt.restore)

        start_iter = checkpoint['epoch'] + 1
        best_result = checkpoint['best_result']
        optimizer = checkpoint['optimizer']

        model = get_model(opt)
        model.load_state_dict(checkpoint['state_dict'])

        print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
        del checkpoint  # clear memory
        # del model_dict
        torch.cuda.empty_cache()
    else:
        print("=> creating Model")
        model = get_model(opt)

        print("=> model created.")
        start_iter = 1
        best_result = None

        # different modules have different learning rate
        train_params = get_train_params(opt, model)
        optimizer = torch.optim.SGD(train_params,
                                    lr=opt.lr,
                                    momentum=opt.momentum,
                                    weight_decay=opt.weight_decay)

    if torch.cuda.device_count() == 1:
        from libs.trainers import single_gpu_trainer
        trainer = single_gpu_trainer.trainer(opt, model, optimizer, start_iter,
                                             best_result)
        trainer.train_eval()
    else:
        from libs.trainers import multi_gpu_trainer
        trainer = multi_gpu_trainer.trainer(opt, model, optimizer, start_iter,
                                            best_result)
        trainer.train_eval()
Example #29
0
import utils
import network

import numpy as np
import os

(x_train, y_train), (x_test, y_test) = utils.load_data()

model = network.get_model()

model.fit(x_train,
          y_train / np.array([1920, 1080]),
          validation_data=(x_test, y_test / np.array([1920, 1080])),
          batch_size=64,
          epochs=200,
          verbose=1)

model.save('model.h5')
Example #30
0
def train():
    with tf.Graph().as_default():
        with tf.device('/gpu:' + str(FLAGS.gpu)):
            pointgrid_ph, seg_label_ph = placeholder_inputs()
            is_training_ph = tf.placeholder(tf.bool, shape=())

            # model
            pred_seg = model.get_model(pointgrid_ph,
                                       is_training=is_training_ph)
            total_loss, seg_loss = model.get_loss(pred_seg, seg_label_ph)

            # optimization
            total_var = tf.trainable_variables()
            step = tf.train.AdamOptimizer(
                learning_rate=LEARNING_RATE).minimize(total_loss,
                                                      var_list=total_var)

        # write logs to the disk
        flog = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
        saver = tf.train.Saver()

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        sess = tf.Session(config=config)

        if not load_checkpoint(ckpt_dir, sess):
            sess.run(tf.global_variables_initializer())

        # Add summary writers
        train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'),
                                             sess.graph)
        test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'))

        fcmd = open(os.path.join(LOG_DIR, 'cmd.txt'), 'w')
        fcmd.write(str(FLAGS))
        fcmd.close()

        def train_one_epoch(epoch_num, sess, train_writer):
            is_training = True
            current_data, current_label, _ = shuffle_data(
                train_data, train_label)
            num_data = train_data.shape[0]
            num_batch = num_data // BATCH_SIZE
            total_loss_acc = 0.0
            seg_loss_acc = 0.0

            for batch_idx in range(num_batch):

                start_idx = batch_idx * BATCH_SIZE
                end_idx = (batch_idx + 1) * BATCH_SIZE

                pointgrid, pointgrid_label = transfor_data(
                    current_data[start_idx:end_idx, :, :],
                    current_label[start_idx:end_idx, :])

                feed_dict = {
                    is_training_ph: is_training,
                    pointgrid_ph: pointgrid,
                    seg_label_ph: pointgrid_label
                }

                _, total_loss_val, seg_loss_val = sess.run(
                    [step, total_loss, seg_loss], feed_dict=feed_dict)
                # train_writer.add_summary(total_loss_val,seg_loss_val)
                total_loss_acc += total_loss_val
                seg_loss_acc += seg_loss_val

                if batch_idx % 100 == 0:
                    print('Current batch/total batch num: %d/%d' %
                          (batch_idx, num_batch))
                    printout(
                        flog, 'Epoch %d/%d - Iter %d/%d' %
                        (epoch_num + 1, TRAINING_EPOCHES, batch_idx + 1,
                         num_batch))
                    printout(
                        flog,
                        'Total Loss: %f' % (total_loss_acc / (batch_idx + 1)))
                    printout(
                        flog, 'Segmentation Loss: %f' % (seg_loss_acc /
                                                         (batch_idx + 1)))

            printout(flog,
                     '\tMean Total Loss: %f' % (total_loss_acc / num_batch))
            printout(
                flog,
                '\tMean Segmentation Loss: %f' % (seg_loss_acc / num_batch))

        def test_one_epoch(sess, test_writer):
            is_training = False
            current_data, current_label, _ = shuffle_data(
                test_data, test_label)
            num_data = test_data.shape[0]
            num_batch = num_data // BATCH_SIZE
            total_loss_acc = 0.0
            seg_loss_acc = 0.0
            total_correct = 0
            total_seen = 0
            total_seen_class = [0 for _ in range(model.SEG_PART)]
            total_correct_class = [0 for _ in range(model.SEG_PART)]

            for batch_idx in range(num_batch):
                if batch_idx % 100 == 0:
                    print('Current batch/total batch num: %d/%d' %
                          (batch_idx, num_batch))
                start_idx = batch_idx * BATCH_SIZE
                end_idx = (batch_idx + 1) * BATCH_SIZE

                pointgrid, pointgrid_label = transfor_data(
                    current_data[start_idx:end_idx, :, :],
                    current_label[start_idx:end_idx, :])

                feed_dict = {
                    is_training_ph: is_training,
                    pointgrid_ph: pointgrid,
                    seg_label_ph: pointgrid_label
                }

                _, total_loss_val, seg_loss_val, pred_val = sess.run(
                    [step, total_loss, seg_loss, pred_seg],
                    feed_dict=feed_dict)
                # test_writer.add_summary(step, total_loss_val, seg_loss_val)
                total_loss_acc += total_loss_val
                seg_loss_acc += seg_loss_val

                pred_val = np.argmax(pred_val, 2)
                TP = np.sum(pred_val == current_label[start_idx:end_idx])
                total_correct += TP
                total_seen += (BATCH_SIZE * model.NUM_POINT)

                for i in range(start_idx, end_idx):
                    for j in range(model.NUM_POINT):
                        l = current_label[i, j]
                        total_seen_class[l] += 1
                        total_correct_class[l] += (pred_val[i - start_idx,
                                                            j] == l)

            printout(flog,
                     'eval accuracy: %f' % (total_correct / float(total_seen)))
            printout(
                flog, 'eval avg class acc: %f' % (np.mean(
                    np.array(total_correct_class) /
                    np.array(total_seen_class, dtype=np.float))))

            printout(flog,
                     '\tMean Total Loss: %f' % (total_loss_acc / num_batch))
            printout(
                flog,
                '\tMean Segmentation Loss: %f' % (seg_loss_acc / num_batch))

        for epoch in range(TRAINING_EPOCHES):
            printout(
                flog, '\n>>> Training for the epoch %d/%d ...' %
                (epoch, TRAINING_EPOCHES))

            train_one_epoch(epoch, sess, train_writer)
            # test_one_epoch(sess, test_writer)

            if epoch % 5 == 0:
                cp_filename = saver.save(
                    sess,
                    os.path.join(LOG_DIR, 'epoch_' + str(epoch + 1) + '.ckpt'))
                printout(
                    flog, 'Successfully store the checkpoint model into ' +
                    cp_filename)

            flog.flush()
        flog.close()
Example #31
0
def main():
    global logger, cfg

    logger, cfg, run_dir = get_logger_and_parser()

    # Settings for distributed training.
    torch.cuda.set_device(cfg['local_rank'])
    dist.init_process_group('nccl', init_method='env://')

    # Set model & criterion.
    model_path = os.path.join(run_dir, 'model')
    criterion = nn.CrossEntropyLoss(ignore_index=cfg['ignore_label'])
    model = network.get_model(criterion, cfg['auxloss'], cfg['auxloss_weight'])
    if main_process():
        logger.info(model)

    if cfg['sync_bn']:
        if main_process():
            logger.info('Convert batch norm layers to be sync.')

        # If you're using pytorch version below 1.3.0, we'll use manually-implemented sync_bn.
        # More details please refer: https://github.com/vacancy/Synchronized-BatchNorm-PyTorch.
        try:
            model = nn.SyncBatchNorm.convert_sync_batchnorm(model).cuda()
        except AttributeError:
            from misc.sync_batchnorm.batchnorm import convert_model
            model = convert_model(model).cuda()

    if main_process():
        logger.info(
            f'Segmentation Network Total Params number: {count_model_param(model) / 1E6}M'
        )

    check_dir_exists(model_path)

    # Set optimizer. Different learning rate for encoder an decoder.
    # params_list: 0 for encoder, 1 for decoder.
    param_list = [
        dict(params=model.encoder.parameters(), lr=cfg['base_lr']),
        dict(params=model.decoder.parameters(),
             lr=cfg['base_lr'] * cfg['decoder_lr_mul'])
    ]

    optimizer = optim.SGD(param_list,
                          lr=cfg['base_lr'],
                          momentum=cfg['momentum'],
                          weight_decay=cfg['weight_decay'])

    model = nn.parallel.DistributedDataParallel(
        model, device_ids=[cfg['local_rank']], output_device=cfg['local_rank'])

    # Resume.
    # TODO(xwd): This method will consume more GPU memory in main GPU. Try to reduce it.
    if cfg['resume'] is not None and os.path.isfile(cfg['resume']):
        checkpoint = torch.load(cfg['resume'],
                                map_location=torch.device('cpu'))
        cfg['start_epoch'] = checkpoint['epoch']
        model.load_state_dict(
            safe_loader(checkpoint['state_dict'], use_model='multi'))
        optimizer.load_state_dict(checkpoint['optimizer'])
        del checkpoint
    else:
        model_save_path = read_newest_model_path(model_path)
        if model_save_path is not None:
            checkpoint = torch.load(model_save_path,
                                    map_location=torch.device('cpu'))
            cfg['start_epoch'] = checkpoint['epoch']
            model.load_state_dict(
                safe_loader(checkpoint['state_dict'], use_model='multi'))
            optimizer.load_state_dict(checkpoint['optimizer'])
            if main_process():
                logger.info(
                    f"Pretrained checkpoint loaded. Start from epoch {cfg['start_epoch']}."
                )
            del checkpoint

    # Set data loader & sampler.
    train_loader, train_sampler = get_dataloader()

    # Training.
    for epoch in range(cfg['start_epoch'], cfg['epochs']):
        if cfg['multiprocessing_distributed']:
            train_sampler.set_epoch(epoch)

        epoch_log = epoch + 1
        train_epoch(train_loader, model, optimizer, epoch)

        if main_process() and (epoch_log % cfg['save_freq'] == 0):
            logger.info(model_path, f'checkpoint_{epoch_log}.pth')
            filename = os.path.join(model_path,
                                    'checkpoint_{}.pth'.format(epoch_log))
            logger.info(f'Saving checkpoint to: {filename}')
            torch.save(
                {
                    'epoch': epoch_log,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict()
                }, filename)
            if epoch_log / cfg['save_freq'] > 2:
                deletename = os.path.join(
                    model_path,
                    f"checkpoint_{epoch_log - cfg['save_freq'] * 2}.pth")
                if os.path.exists(deletename):
                    os.remove(deletename)
Example #32
0
    def run(self):

        self.signal_log.emit("Making training Data")
        #make 10 training data
        train_set = utils.make_subsample_data(original_data,
                                              original_ground_truth,
                                              size=100,
                                              sample_size=sample_size)
        test_data = utils.make_subsample_data(original_data,
                                              original_ground_truth,
                                              sample_size=sample_size)

        self.signal_log.emit("Initializing Graph...")
        num_point = train_set[0]['input'].shape[0]
        input_tensor = tf.placeholder(tf.float32,
                                      shape=(None, num_point, 3),
                                      name="target_input")
        gt_tensor = tf.placeholder(tf.int32, shape=(None, num_point))
        is_training = tf.placeholder(tf.bool, name="target_isTraining")
        output_tensor = network.get_model(input_tensor, is_training)

        output_data_tensor = tf.argmax(output_tensor, 2, name="target_output")

        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=gt_tensor, logits=output_tensor)
        loss_op = tf.reduce_mean(loss)

        regularizer = tf.add_n([
            tf.nn.l2_loss(v) for v in tf.trainable_variables()
            if 'bias' not in v.name
        ])  #
        loss_op = loss_op + 0.001 * regularizer

        optimizer = tf.train.AdamOptimizer(1e-4, 0.5)
        train_op = optimizer.minimize(loss_op)

        self.signal_log.emit("Initializing weights...")
        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())

        self.signal_log.emit("Start Training...")
        #for epoch in range(self.max_epoch):
        while True:
            epoch = 1
            #Save
            # save_path = "./weights/epoch_" + str(epoch)
            # builder = tf.saved_model.builder.SavedModelBuilder(save_path)
            # builder.add_meta_graph_and_variables(sess, ['ejshim'])
            # builder.save()
            #while True:

            idx = 0
            #for data in train_set:
            while idx < len(train_set):

                batch = train_set[idx:idx + batch_size]
                idx = idx + batch_size

                input_data = []
                gt_data = []

                for data in batch:
                    input_data.append(data['input'])
                    gt_data.append(data['gt'])

                # input_data = batch['input']
                # gt_data = batch['gt']

                [output_data, loss, _] = sess.run(
                    [output_data_tensor, loss_op, train_op],
                    feed_dict={
                        input_tensor: input_data,
                        gt_tensor: gt_data,
                        is_training: True
                    })

                log = str(epoch) + "/" + str(self.max_epoch -
                                             1) + ", Loss : " + str(loss)
                for i in range(batch_size):
                    utils.update_segmentation(input_poly, output_data[i],
                                              batch[i]['idx'])
                self.signal_log.emit(log)

            #run test
            # for data in test_data:
            #     output_data = sess.run(output_data_tensor, feed_dict={input_tensor:[data['input']], is_training:False})
            #     utils.update_segmentation(input_poly, output_data[0], data['idx'])
            #     renderWindow.Render()

        self.signal_log.emit("Finished")
Example #33
0
def predict():
    is_training = False
    with tf.device('/gpu:'+str(gpu_to_use)):
        pointgrid_ph,  seg_label_ph = placeholder_inputs()
        is_training_ph = tf.placeholder(tf.bool, shape=())
        pred_seg = model.get_model(pointgrid_ph, is_training=is_training_ph)

    saver = tf.train.Saver()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True

    with tf.Session(config=config) as sess:
        if not os.path.exists(output_dir):
            os.mkdir(output_dir)

        flog = open(os.path.join(output_dir, 'log-6.txt'), 'w')

        # Restore variables from disk.
        ckpt_dir = './train_results_6/trained_models'
        if not load_checkpoint(ckpt_dir, sess):
            exit()

        if not os.path.exists('../data/ShapeNet/test-PointGrid'):
            os.mkdir('../data/ShapeNet/test-PointGrid')

        gt_classes = [0 for _ in range(model.SEG_PART)]
        positive_classes = [0 for _ in range(model.SEG_PART)]
        true_positive_classes = [0 for _ in range(model.SEG_PART)]
        for filelist in sorted(os.listdir(TESTING_FILE_LIST)):
            printout(flog,filelist)
            mat_content = np.load(os.path.join(TESTING_FILE_LIST,filelist))
            # choice = np.random.choice(mat_content.shape[0], model.SAMPLE_NUM, replace=False)
            # mat_content = mat_content[choice, :]

            xyz = mat_content[:, 0:3]
            rgb = mat_content[:, 3:6] / 255.0

            pc = np.concatenate((xyz, rgb), axis=1)
            labels = np.squeeze(mat_content[:, -1]).astype(int)

            seg_label = model.integer_label_to_one_hot_label(labels)
            pointgrid, pointgrid_label, index = model.pc2voxel(pc, seg_label)

            pointgrid = np.expand_dims(pointgrid, axis=0)
            pointgrid_label = np.expand_dims(pointgrid_label, axis=0)
            feed_dict = {
                         pointgrid_ph: pointgrid,
                         seg_label_ph: pointgrid_label,
                         is_training_ph: is_training,
                        }
            t1 = time.time()
            pred_seg_val = sess.run(pred_seg, feed_dict = feed_dict)
            #    pred_seg: of size B x N x N x N x (K+1) x NUM_PART_SEG

            pred_seg_val = pred_seg_val[0, :, :, :, :, :]
            pred_point_label = model.populateOneHotSegLabel(pc, pred_seg_val, index)
            #     pred_point_label: size n x 1

            if purify == True:
                pre_label = pred_point_label
                for i in range(pc.shape[0]): #one point cloud num 2500--2800
                    idx = np.argsort(np.sum((pc[i, :] - pc) ** 2, axis=1))
                    j, L = 0, []
                    for _ in range(knn):
                        if (idx[j] == i):
                            j += 1
                        L.append(pre_label[idx[j]])
                        j += 1
                    majority = max(set(L), key=L.count)
                    if (pre_label[i] == 0 or len(set(L)) == 1):
                        pred_point_label[i] = majority
            t2 = time.time()
            print('one point cloud cost time:{}'.format(t2 - t1))

            for j in range(pred_point_label.shape[0]):
                # gt_classes[labels[j]-1]+=1
                # if int(labels[j])==int(pred_point_label[j]):
                #     positive_classes[labels[j]-1]+=1
                # else:
                #     negative_classes[labels[j]-1]+=1

                gt_l = int(labels[j])
                pred_l = int(pred_point_label[j])
                gt_classes[gt_l] += 1
                positive_classes[pred_l] += 1
                true_positive_classes[gt_l] += int(gt_l == pred_l)
            printout(flog, 'gt_l:{},positive_classes:{},true_positive_classes:{}'.format(gt_classes, positive_classes,
                                                                                         true_positive_classes))

        printout(flog, 'gt_l count:{}'.format(gt_classes))
        printout(flog, 'positive_classes count:{}'.format(positive_classes))
        printout(flog, 'true_positive_classes count:{}'.format(true_positive_classes))

        iou_list = []
        for i in range(model.SEG_PART):
            iou = true_positive_classes[i] / float(gt_classes[i] + positive_classes[i] - true_positive_classes[i])
            iou_list.append(iou)
        printout(flog, 'IOU:{}'.format(iou_list))
        printout(flog, 'ACC:{}'.format(sum(true_positive_classes) / sum(positive_classes)))
        printout(flog, 'mIOU:{}'.format(sum(iou_list) / float(model.SEG_PART)))
Example #34
0
config.DATA.NUM_CLASSESS = len(class_names)

opt.width = 600
opt.height = 600

# FRCNN
divisor = 32
val_transform = A.Compose(
    [
        # A.SmallestMaxSize(600, p=1.0),  # resize到短边600
        # A.PadIfNeeded(min_height=None, min_width=None, pad_height_divisor=divisor, pad_width_divisor=divisor, p=1.0),
        ToTensorV2(p=1.0),
    ],
    p=1.0)

Model = get_model(config.MODEL.NAME)
model = Model(opt)
model = model.to(device=opt.device)

if opt.load:
    which_epoch = model.load(opt.load)
else:
    which_epoch = 0

model.eval()

# img = cv2.imread('a.jpg')
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32)
# img /= 255.0  # 转成0~1之间
#
# img_input = val_transform(image=img)['image']
Example #35
0
def eval_single_gpu(worker, cfg, logger, eval_dataset, results_queue):
    os.environ["CUDA_VISIBLE_DEVICES"] = str(worker)

    value_scale = 255
    mean = [0.485, 0.456, 0.406]
    mean = [item * value_scale for item in mean]
    std = [0.229, 0.224, 0.225]
    std = [item * value_scale for item in std]

    ruler = VocCityscapesMetric()
    data_time = AverageMeter()
    batch_time = AverageMeter()
    end = time.time()

    # Load dataset
    data_size = len(eval_dataset)
    eval_loader = DataLoader(eval_dataset,
                             batch_size=2,
                             shuffle=False,
                             num_workers=4,
                             pin_memory=True,
                             drop_last=False)

    # Get model checkpoint.
    checkpoint = torch.load(cfg['model_path'])

    # Load model.
    model = network.get_model()
    if worker == 0:
        logger.info(model)
    model = torch.nn.DataParallel(model).cuda()

    model.load_state_dict(
        safe_loader(checkpoint['state_dict'], use_model='multi'))
    logger.info(
        f'Worker[{worker}]: Segmentation Network Total Params number: {count_model_param(model) / 1E6}M'
    )

    model.eval()
    process_count = 0

    for _, (image, label) in enumerate(eval_loader):
        assert image.shape[0] == label.shape[0]
        data_time.update(time.time() - end)
        for j in range(image.shape[0]):
            cur_image = image[j].numpy()
            cur_label = label[j].numpy()

            h, w, _ = cur_image.shape
            prediction = np.zeros((h, w, cfg['classes']), dtype=float)

            for scale in cfg['scales']:
                long_size = round(scale * cfg['base_size'])
                new_h = long_size
                new_w = long_size
                if h > w:
                    new_w = round(long_size / float(h) * w)
                else:
                    new_h = round(long_size / float(w) * h)
                image_scale = cv2.resize(cur_image, (new_w, new_h),
                                         interpolation=cv2.INTER_LINEAR)
                if len(image_scale.shape) == 2:
                    # Unsqueeze for gray image.
                    image_scale = np.expand_dims(image_scale, 2)

                prediction += eval_in_scale(model, image_scale, cfg['classes'],
                                            cfg['test_h'], cfg['test_w'], h, w,
                                            mean, std)

            prediction /= len(cfg['scales'])
            prediction = np.argmax(prediction, axis=2)
            batch_time.update(time.time() - end)
            end = time.time()
            process_count += 1

            if process_count % 10 == 0 or process_count == data_size:
                logger.info(
                    '[Worker{}] Test: [{}/{}] '
                    'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
                    'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}).'.
                    format(worker,
                           process_count,
                           data_size,
                           data_time=data_time,
                           batch_time=batch_time))

            if cur_label is not None:
                hist_tmp, labeled_tmp, correct_tmp = ruler.hist_info(
                    cfg['classes'], prediction, cur_label)
                results_queue.put({
                    'hist': hist_tmp,
                    'labeled': labeled_tmp,
                    'correct': correct_tmp
                })