Example #1
0
class Agent():
    def __init__(self, alpha = 0.0003, beta = 0.0003, input_dims = [8],
                 env = None, gamma = 0.99, tau = 0.005, n_actions = 2, max_size = 1000000,
                 layer1_size = 256, layer2_size = 256, batch_size = 256, reward_scale = 2):
        self.gamma = gamma
        self.tau = tau
        self.batch_size = batch_size
        self.n_actions = n_actions
        self.scale = reward_scale

        self.memory = ReplayBuffer(max_size, input_dims, n_actions = n_actions)
        self.actor = ActorNetwork(alpha, input_dims, n_actions = n_actions, max_action = env.action_space.high)
        self.critic1 = CriticNetwork(beta, input_dims, n_actions = n_actions, name = 'critic1')
        self.critic2 = CriticNetwork(beta, input_dims, n_actions = n_actions, name = 'critic2')
        self.value = ValueNetwork(beta, input_dims, name = 'value')
        self.target_value = ValueNetwork(beta, input_dims, name = 'target')
        self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

        self.update_network_params(tau = 1)

    def choose_action(self, obs):
        state = torch.tensor([obs],dtype=torch.float32).to(self.device)
        actions, _ = self.actor.sample_normal(state, reparam = False)

        return actions.cpu().detach().numpy()[0]

    def store_trans(self, state, action, reward, new_state, done):
        self.memory.store_trans(state, action, reward, new_state, done)

    def update_network_params(self, tau = None):
        if tau is None:
            tau = self.tau
        
        target_value_params = self.target_value.named_parameters()
        value_params = self.value.named_parameters()

        target_value_state_dict = dict(target_value_params)
        value_state_dict = dict(value_params)

        for name in value_state_dict.keys():
            value_state_dict[name] = tau * value_state_dict[name].clone() + \
                (1 - tau) * target_value_state_dict[name].clone()
            
        self.target_value.load_state_dict(value_state_dict)

    def save_models(self):
        self.actor.save_checkpoint()
        self.value.save_checkpoint()
        self.target_value.save_checkpoint()
        self.critic1.save_checkpoint()
        self.critic2.save_checkpoint()
        print('saving models')
    def load_models(self):
        self.actor.load_checkpoint()
        self.value.load_checkpoint()
        self.target_value.load_checkpoint()
        self.critic1.load_checkpoint()
        self.critic2.load_checkpoint()
        print('loading models')

    def get_critic_val_log_prob(self, state, reparam):
        actions, log_probs = self.actor.sample_normal(state, reparam = False)
        log_probs = log_probs.view(-1)
        q1_new = self.critic1(state, actions)
        q2_new = self.critic2(state, actions)
        critic_value = torch.min(q1_new, q2_new)
        critic_value = critic_value.view(-1)

        return log_probs, critic_value

    def learn(self):
        if self.memory.mem_counter < self.batch_size:
            return
        
        state, action, reward, new_state, done = \
                self.memory.sample_buffer(self.batch_size)

        reward = torch.tensor(reward, dtype=torch.float).to(self.actor.device)
        done = torch.tensor(done).to(self.actor.device)
        state_ = torch.tensor(new_state, dtype=torch.float).to(self.actor.device)
        state = torch.tensor(state, dtype=torch.float).to(self.actor.device)
        action = torch.tensor(action, dtype=torch.float).to(self.actor.device)

        value = self.value(state).view(-1)
        value_ = self.target_value(state_).view(-1)
        value_[done] = 0.0

        actions, log_probs = self.actor.sample_normal(state, reparam=False)
        log_probs = log_probs.view(-1)
        q1_new_policy = self.critic1.forward(state, actions)
        q2_new_policy = self.critic2.forward(state, actions)
        critic_value = torch.min(q1_new_policy, q2_new_policy)
        critic_value = critic_value.view(-1)

        self.value.optimizer.zero_grad()
        value_target = critic_value - log_probs
        value_loss = 0.5 * F.mse_loss(value, value_target)
        value_loss.backward(retain_graph=True)
        self.value.optimizer.step()

        actions, log_probs = self.actor.sample_normal(state, reparam=True)
        log_probs = log_probs.view(-1)
        q1_new_policy = self.critic1.forward(state, actions)
        q2_new_policy = self.critic2.forward(state, actions)
        critic_value = torch.min(q1_new_policy, q2_new_policy)
        critic_value = critic_value.view(-1)
        
        actor_loss = log_probs - critic_value
        actor_loss = torch.mean(actor_loss)
        self.actor.optimizer.zero_grad()
        actor_loss.backward(retain_graph=True)
        self.actor.optimizer.step()

        self.critic1.optimizer.zero_grad()
        self.critic2.optimizer.zero_grad()
        q_hat = self.scale*reward + self.gamma*value_
        q1_old_policy = self.critic1.forward(state, action).view(-1)
        q2_old_policy = self.critic2.forward(state, action).view(-1)
        critic1_loss = 0.5 * F.mse_loss(q1_old_policy, q_hat)
        critic2_loss = 0.5 * F.mse_loss(q2_old_policy, q_hat)

        critic_loss = critic1_loss + critic2_loss
        critic_loss.backward()
        self.critic1.optimizer.step()
        self.critic2.optimizer.step()

        self.update_network_params()
Example #2
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self,
                 state_size,
                 action_size,
                 lr_actor=LR_ACTOR,
                 lr_critic=LR_CRITIC,
                 random_seed=42,
                 num_agents=1):
        """Initialize Agent object.
        
        Params
        ====
            state_size (int): Dimension of each state
            action_size (int): Dimension of each action
            lr_actor (float): Learning rate for actor model
            lr_critic (float): Learning Rate for critic model
            random_seed (int): Random seed
            num_agents (int): Number of agents
            
        return 
        ====
            None
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)
        self.num_agents = num_agents

        # Initialize time step (for updating every hyperparameters["update_every"] steps)
        self.t_step = 0

        # Actor network
        self.actor = ActorNetwork(lr_actor,
                                  state_size,
                                  action_size,
                                  random_seed,
                                  name="actor")
        self.actor_target = ActorNetwork(lr_actor,
                                         state_size,
                                         action_size,
                                         random_seed,
                                         name="actor_target")

        self.soft_update(self.actor, self.actor_target, tau=1)

        # Critic network
        self.critic = CriticNetwork(lr_critic,
                                    state_size,
                                    action_size,
                                    random_seed,
                                    name="critic")
        self.critic_target = CriticNetwork(lr_critic,
                                           state_size,
                                           action_size,
                                           random_seed,
                                           name="critic_target")

        self.soft_update(self.critic, self.critic_target, tau=1)

        # Noise process
        self.noise = OUActionNoise(mu=np.zeros(action_size))

        # Replay buffer memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE,
                                   random_seed)

    def step(self, states, actions, rewards, next_states, dones):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        # Save experience / reward
        # Support for multi agents learners
        for state, action, reward, next_state, done in zip(
                states, actions, rewards, next_states, dones):
            self.memory.add(state, action, reward, next_state, done)
        # Update timestep to learn
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        # Learn, if enough samples are available in memory
        if len(self.memory) > BATCH_SIZE and self.t_step == 0:
            experiences = self.memory.sample()
            self.learn(experiences, GAMMA)

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        states = T.from_numpy(state).float().to(device)
        self.actor.eval()
        with T.no_grad():
            actions = self.actor(states).cpu().data.numpy()
        self.actor.train()

        if add_noise:
            actions += self.noise.sample()
        return np.clip(actions, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)
        Q_targets_next = self.critic_target(next_states, actions_next)
        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic(states, actions)
        critic_loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.critic.optimizer.zero_grad()
        critic_loss.backward()
        T.nn.utils.clip_grad_norm_(self.critic.parameters(), 1.0)
        self.critic.optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor(states)
        actor_loss = -self.critic(states, actions_pred).mean()
        # Minimize the loss
        self.actor.optimizer.zero_grad()
        actor_loss.backward()
        self.actor.optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic, self.critic_target, TAU)
        self.soft_update(self.actor, self.actor_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def save_models(self):
        """ Save models weights """
        self.actor.save_checkpoint()
        self.critic.save_checkpoint()
        self.actor_target.save_checkpoint()
        self.critic_target.save_checkpoint()

    def load_models(self):
        """ Load models weights """
        self.actor.load_checkpoint()
        self.critic.load_checkpoint()
        self.actor_target.load_checkpoint()
        self.critic_target.load_checkpoint()
Example #3
0
class Agent:
    def __init__(self, input_size, output_size, hidden = 256, lr_actor=1.0e-3, lr_critic=1.0e-3, agent_number=0, tau=1.0e-2,
                 gamma=0.99, epsilon=1.0, epsilon_decay=0.99, weight_decay=0, clipgrad=.1, seed = 42):
        super(Agent, self).__init__()
        
        self.seed = seed
        self.actor         = ActorNetwork(input_size, output_size, name=f"Actor_Agent{agent_number}").to(device)
        self.critic        = CriticNetwork(input_size, output_size, name=f"Critic_Agent{agent_number}").to(device)
        self.target_actor  = ActorNetwork(input_size, output_size, name=f"Actor_Target_Agent{agent_number}").to(device)
        self.target_critic = CriticNetwork(input_size, output_size, name=f"Critic_Target_Agent{agent_number}").to(device)
        
        
        
        self.noise = OUActionNoise(mu=np.zeros(output_size))
        self.tau = tau
        self.epsilon = epsilon
        self.epsilon_decay=epsilon_decay
        self.gamma = gamma
        self.clipgrad = clipgrad
        
        self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=lr_actor)
        self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=lr_critic, weight_decay=weight_decay)
       

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        state = torch.from_numpy(state).float().unsqueeze(0).to(device) #.unsqueeze(0)
        self.actor.eval()
        with torch.no_grad():
            action = self.actor(state).cpu().squeeze(0).data.numpy()

        self.actor.train()
        if add_noise:
            action += self.noise.sample() * self.epsilon
        return np.clip(action, -1, 1)
    
    
    def learn(self, experiences):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences
        

        

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.target_actor(next_states.to(device))
        #set_trace()
        Q_targets_next = self.target_critic(next_states.to(device), actions_next.to(device))
        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (self.gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic(states, actions)
        critic_loss = f.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        clip_grad_norm_(self.critic.parameters(), self.clipgrad)
        self.critic_optimizer.step()

        #    update actor
        # Compute actor loss
        actions_pred = self.actor(states)
        actor_loss = -self.critic(states, actions_pred).mean()
        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        #clip_grad_norm_(self.actor.parameters(), self.clipgrad)
        self.actor_optimizer.step()

        #    update target networks
        self.soft_update(self.critic, self.target_critic )
        self.soft_update(self.actor, self.target_actor)                     
        
        #    update epsilon and noise
        self.epsilon *= self.epsilon_decay
        self.noise.reset()
    


    def reset(self):
        self.noise.reset()
    
    def soft_update(self, local_model, target_model):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(self.tau*local_param.data + (1.0-self.tau)*target_param.data)
            
    def save_models(self):
        """ Save models weights """
        self.actor.save_checkpoint()
        self.critic.save_checkpoint()
        self.target_actor.save_checkpoint()
        self.target_critic.save_checkpoint()
        
    def load_models(self):
        """ Load models weights """
        self.actor.load_checkpoint()
        self.critic.load_checkpoint()
        self.target_actor.load_checkpoint()
        self.target_critic.load_checkpoint()            
Example #4
0
class Agent():
    def __init__(self,
                 alpha,
                 beta,
                 input_dims,
                 tau,
                 env,
                 env_id,
                 gamma=0.99,
                 n_actions=2,
                 max_size=1000000,
                 layer_1_size=256,
                 layer_2_size=256,
                 batch_size=100,
                 reward_scale=2):

        self.gamma = gamma
        self.tau = tau
        self.memory = ReplayBuffer(max_size, input_dims, n_actions)

        self.batch_size = batch_size
        self.n_actions = n_actions
        self.scale = reward_scale
        self.actor = ActorNetwork(alpha,
                                  input_dims,
                                  layer_1_size,
                                  layer_2_size,
                                  n_actions=n_actions,
                                  name=env_id + '_actor',
                                  max_action=env.action_space.high)

        self.critic_1 = CriticNetwork(beta,
                                      input_dims,
                                      layer_1_size,
                                      layer_2_size,
                                      n_actions=n_actions,
                                      name=env_id + '_critic_1')

        self.critic_2 = CriticNetwork(beta,
                                      input_dims,
                                      layer_1_size,
                                      layer_2_size,
                                      n_actions=n_actions,
                                      name=env_id + '_critic_2')

        self.value = ValueNetwork(beta,
                                  input_dims,
                                  layer_1_size,
                                  layer_2_size,
                                  name=env_id + '_value')

        self.target_value = ValueNetwork(beta,
                                         input_dims,
                                         layer_1_size,
                                         layer_2_size,
                                         name=env_id + '_target_value')

        self.update_network_parameters(tau=1)

    def choose_action(self, observation):
        state = T.tensor([observation], dtype=T.float).to(self.actor.device)
        actions, _ = self.actor.sample_normal(state, reparameterize=False)
        return actions.cpu().detach().numpy()[0]

    def remember(self, state, action, reward, state_, done):
        self.memory.store_transitions(state, action, reward, state_, done)

    def update_network_parameters(self, tau=None):
        if tau is None:
            tau = self.tau

        value_params = self.value.named_parameters()
        target_value_params = self.target_value.named_parameters()

        value_state_dict = dict(value_params)
        target_value_state_dict = dict(target_value_params)

        for name in value_state_dict:
            value_state_dict[name] = tau*value_state_dict[name].clone() \
                + (1-tau)*target_value_state_dict[name].clone()

        self.target_value.load_state_dict(value_state_dict)

    def save_models(self):
        print('.... saving models ....')
        self.actor.save_checkpoint()
        self.value.save_checkpoint()
        self.target_value.save_checkpoint()
        self.critic_1.save_checkpoint()
        self.critic_2.save_checkpoint()

    def load_models(self):
        print('.... loading models ....')
        self.actor.load_checkpoint()
        self.value.load_checkpoint()
        self.target_value.load_checkpoint()
        self.critic_1.load_checkpoint()
        self.critic_2.load_checkpoint()

    def learn(self):
        if self.memory.mem_cntr < self.batch_size:
            return

        state, action, reward, state_, done =\
            self.memory.sample_buffer(self.batch_size)

        state = T.tensor(state, dtype=T.float).to(self.critic_1.device)
        state_ = T.tensor(state_, dtype=T.float).to(self.critic_1.device)
        action = T.tensor(action, dtype=T.float).to(self.critic_1.device)
        reward = T.tensor(reward, dtype=T.float).to(self.critic_1.device)
        done = T.tensor(done).to(self.critic_1.device)

        value = self.value(state).view(-1)
        value_ = self.target_value(state_).view(-1)
        value_[done] = 0.0

        actions, log_probs = self.actor.sample_normal(state,
                                                      reparameterize=False)
        log_probs = log_probs.view(-1)
        q1_new_policy = self.critic_1(state, actions)
        q2_new_policy = self.critic_2(state, actions)
        critic_value = T.min(q1_new_policy, q2_new_policy)
        critic_value = critic_value.view(-1)

        self.value.optimizer.zero_grad()
        value_target = critic_value - log_probs
        value_loss = 0.5 * F.mse_loss(value, value_target)
        value_loss.backward(retain_graph=True)
        self.value.optimizer.step()

        actions, log_probs = self.actor.sample_normal(state,
                                                      reparameterize=True)
        log_probs = log_probs.view(-1)
        q1_new_policy = self.critic_1(state, actions)
        q2_new_policy = self.critic_2(state, actions)
        critic_value = T.min(q1_new_policy, q2_new_policy)
        critic_value = critic_value.view(-1)

        actor_loss = log_probs - critic_value
        actor_loss = T.mean(actor_loss)
        self.actor.optimizer.zero_grad()
        actor_loss.backward(retain_graph=True)
        self.actor.optimizer.step()

        self.critic_1.optimizer.zero_grad()
        self.critic_2.optimizer.zero_grad()

        q_hat = self.scale * reward + self.gamma * value_
        q1_old_policy = self.critic_1(state, action).view(-1)
        q2_old_policy = self.critic_2(state, action).view(-1)
        critic_1_loss = 0.5 * F.mse_loss(q1_old_policy, q_hat)
        critic_2_loss = 0.5 * F.mse_loss(q2_old_policy, q_hat)

        critic_loss = critic_1_loss + critic_2_loss
        critic_loss.backward()
        self.critic_1.optimizer.step()
        self.critic_2.optimizer.step()

        self.update_network_parameters()
Example #5
0
class Agent():
    def __init__(self,
                 alpha=0.0003,
                 beta=.0003,
                 input_dims=[8],
                 env=None,
                 gamma=.99,
                 n_actions=2,
                 max_size=1000000,
                 layer1_size=256,
                 layer2_size=256,
                 tau=.005,
                 batch_size=256,
                 reward_scale=2):
        # reward scales  depends on action convention for the environment
        self.gamma = gamma
        self.tau = tau
        self.memory = ReplayBuffer(max_size, input_dims, n_actions)
        self.batch_size = batch_size
        self.n_actions = n_actions
        # set up classes
        self.actor = ActorNetwork(alpha,
                                  input_dims,
                                  max_action=env.action_space.high,
                                  n_actions=n_actions,
                                  name='actor')

        self.critic1 = CriticNetwork(beta,
                                     input_dims,
                                     n_actions=n_actions,
                                     name='critic_1')
        self.critic2 = CriticNetwork(beta,
                                     input_dims,
                                     n_actions=n_actions,
                                     name='critic_2')

        self.value = ValueNetwork(beta, input_dims, name='value')
        # target value
        self.target_value = ValueNetwork(beta, input_dims, name='target_value')
        self.scale = reward_scale
        self.update_network_parameters(tau=1)

    def choose_action(self, observation):
        # here we turn into a tensor
        state = T.tensor([observation]).to(self.actor.device).float()
        # print(type(state))
        actions, _ = self.actor.sample_normal(state, reparameterize=False)
        return actions.cpu().detach().numpy()[0]

    def remember(self, state, action, reward, new_state, done):
        self.memory.store_transition(state, action, reward, new_state, done)

    def update_network_parameters(self, tau=None):
        if tau is None:
            tau = self.tau

        target_value_params = self.target_value.named_parameters()
        value_params = self.value.named_parameters()

        target_value_state_dict = dict(target_value_params)
        value_state_dict = dict(value_params)

        for name in value_state_dict:
            value_state_dict[name] = tau * value_state_dict[name].clone() + (
                1 - tau) * target_value_state_dict[name].clone()
        self.target_value.load_state_dict(value_state_dict)

    def save_models(self):
        print("saving models:")
        self.actor.save_checkpoint()
        self.value.save_checkpoint()
        self.target_value.save_checkpoint()
        self.critic1.save_checkpoint()
        self.critic2.save_checkpoint()

    def load_models(self):
        print("loading models:")
        self.actor.load_checkpoint()
        self.value.load_checkpoint()
        self.target_value.load_checkpoint()
        self.critic1.load_checkpoint()
        self.critic2.load_checkpoint()

    def learn(self):
        #  must fully load up memory, otherwise must keep learning
        if self.memory.mem_cntr < self.batch_size:
            return
        state, action, reward, new_state, done = self.memory.sample_buffer(
            self.batch_size)

        reward = T.tensor(reward, dtype=T.float).to(self.actor.device)
        done = T.tensor(done).to(self.actor.device)
        state_ = T.tensor(new_state, dtype=T.float).to(self.actor.device)
        state = T.tensor(state, dtype=T.float).to(self.actor.device)
        action = T.tensor(action, dtype=T.float).to(self.actor.device)

        value = self.value(state).view(-1)
        value_ = self.target_value(state_).view(-1)
        value_[done] = 0.0

        actions, log_probs = self.actor.sample_normal(state,
                                                      reparameterize=False)
        log_probs = log_probs.view(-1)
        q1_new_policy = self.critic1.forward(state, actions)
        q2_new_policy = self.critic2.forward(state, actions)
        critic_value = T.min(q1_new_policy, q2_new_policy)
        critic_value = critic_value.view(-1)

        self.value.optimizer.zero_grad()
        value_target = critic_value - log_probs
        value_loss = .5 * F.mse_loss(value, value_target)
        value_loss.backward(retain_graph=True)
        self.value.optimizer.step()

        actions, log_probs = self.actor.sample_normal(state,
                                                      reparameterize=True)
        log_probs = log_probs.view(-1)
        q1_new_policy = self.critic1.forward(state, actions)
        q2_new_policy = self.critic2.forward(state, actions)
        critic_value = T.min(q1_new_policy, q2_new_policy)
        critic_value = critic_value.view(-1)

        actor_loss = log_probs - critic_value
        actor_loss = T.mean(actor_loss)
        self.actor.optimizer.zero_grad()
        actor_loss.backward(retain_graph=True)
        self.actor.optimizer.step()

        self.critic1.optimizer.zero_grad()
        self.critic2.optimizer.zero_grad()
        q_hat = self.scale * reward + self.gamma * value_
        q1_old_policy = self.critic1.forward(state, action).view(-1)
        q2_old_policy = self.critic2.forward(state, action).view(-1)
        critic_1_loss = .5 * F.mse_loss(q1_old_policy, q_hat)
        critic_2_loss = .5 * F.mse_loss(q2_old_policy, q_hat)

        critic_loss = critic_1_loss + critic_2_loss
        critic_loss.backward()
        self.critic1.optimizer.step()
        self.critic2.optimizer.step()

        self.update_network_parameters()