Example #1
0
def run_network(duration, update=False, drive=0):
    """Run network without Webots and plot results"""
    # Simulation setup
    timestep = 5e-3
    times = np.arange(0, duration, timestep)
    n_iterations = len(times)

    parameter_set = SimulationParameters(
        simulation_duration=100,
        drive_mlr=2.5,
        phase_lag=2 * np.pi / 10,
    )

    network = SalamanderNetwork(timestep, parameter_set)
    osc_left = np.arange(10)
    osc_right = np.arange(10, 20)
    osc_legs = np.arange(20, 24)

    # Logs
    phases_log = np.zeros([n_iterations, len(network.state.phases)])
    phases_log[0, :] = network.state.phases
    amplitudes_log = np.zeros([n_iterations, len(network.state.amplitudes)])
    amplitudes_log[0, :] = network.state.amplitudes
    freqs_log = np.zeros([n_iterations, len(network.parameters.freqs)])
    freqs_log[0, :] = network.parameters.freqs
    outputs_log = np.zeros(
        [n_iterations, len(network.get_motor_position_output())])
    outputs_log[0, :] = network.get_motor_position_output()

    # Run network ODE and log data
    tic = time.time()
    for i, _ in enumerate(times[1:]):
        if update:
            network.parameters.update(
                SimulationParameters(
                    drive_mlr=2
                    # amplitude_gradient=None,
                    # phase_lag=None
                ))
        network.step()
        phases_log[i + 1, :] = network.state.phases
        amplitudes_log[i + 1, :] = network.state.amplitudes
        outputs_log[i + 1, :] = network.get_motor_position_output()
        freqs_log[i + 1, :] = network.parameters.freqs
    toc = time.time()

    # Network performance
    pylog.info("Time to run simulation for {} steps: {} [s]".format(
        n_iterations, toc - tic))

    # Implement plots of network results
    pylog.warning("Implement plots")
    #plot_results.main(plot=True)
    #plt.plot(phases_log)
    plt.close('all')
    plt.figure('a')
    plt.plot(outputs_log)
    plt.figure('b')
    plt.plot(amplitudes_log)
Example #2
0
def run_network(duration, update=False, drive=0):
    """Run network without Webots and plot results"""
    # Simulation setup
    timestep = 5e-3
    times = np.arange(0, duration, timestep)
    n_iterations = len(times)
    parameters = SimulationParameters(
        drive=drive,
        amplitude_gradient=None,
        phase_lag=None,
        turn=1.0,
        use_drive_saturation=1,
        shes_got_legs=1,
        cR_body=[0.05, 0.16],  #cR1, cR0
        cR_limb=[0.131, 0.131],  #cR1, cR0
        amplitudes_rate=40,
    )
    network = SalamanderNetwork(timestep, parameters)
    osc_left = np.arange(10)
    osc_right = np.arange(10, 20)
    osc_legs = np.arange(20, 24)

    # Logs
    phases_log = np.zeros([n_iterations, len(network.state.phases)])
    phases_log[0, :] = network.state.phases
    amplitudes_log = np.zeros([n_iterations, len(network.state.amplitudes)])
    amplitudes_log[0, :] = network.state.amplitudes
    freqs_log = np.zeros([n_iterations, len(network.parameters.freqs)])
    freqs_log[0, :] = network.parameters.freqs
    outputs_log = np.zeros(
        [n_iterations, len(network.get_motor_position_output())])
    outputs_log[0, :] = network.get_motor_position_output()

    # Run network ODE and log data
    tic = time.time()
    for i, _ in enumerate(times[1:]):
        if update:
            network.parameters.update(
                SimulationParameters(
                    # amplitude_gradient=None,
                    # phase_lag=None
                ))
        network.step()
        phases_log[i + 1, :] = network.state.phases
        amplitudes_log[i + 1, :] = network.state.amplitudes
        outputs_log[i + 1, :] = network.get_motor_position_output()
        freqs_log[i + 1, :] = network.parameters.freqs
    toc = time.time()

    # Network performance
    pylog.info("Time to run simulation for {} steps: {} [s]".format(
        n_iterations, toc - tic))

    # Implement plots of network results
    pylog.warning("Implement plots")
    plot_results.main()
Example #3
0
    def __init__(self, robot, n_iterations, **kwargs):
        super(SalamanderCMC, self).__init__()
        self.robot = robot
        timestep = int(robot.getBasicTimeStep())
        freqs = kwargs.pop("freqs", None)
        amplitudes = kwargs.pop("amplitudes", None)
        phase_lag = kwargs.pop("phase_lag", None)
        turn = kwargs.pop("turn", None)
        self.network = SalamanderNetwork(1e-3 * timestep, freqs, amplitudes,
                                         phase_lag, turn)

        # Position sensors
        self.position_sensors = [
            self.robot.getPositionSensor('position_sensor_{}'.format(i + 1))
            for i in range(self.N_BODY_JOINTS)
        ]
        for sensor in self.position_sensors:
            sensor.enable(timestep)

        # GPS
        self.gps = robot.getGPS("fgirdle_gps")
        self.gps.enable(timestep)

        # Get motors
        self.motors_body = [
            self.robot.getMotor("motor_{}".format(i + 1))
            for i in range(self.N_BODY_JOINTS)
        ]
        self.motors_legs = [
            self.robot.getMotor("motor_leg_{}".format(i + 1))
            for i in range(self.N_LEGS)
        ]

        # Set motors
        for motor in self.motors_body:
            motor.setPosition(0)
            motor.enableForceFeedback(timestep)
            motor.enableTorqueFeedback(timestep)
        for motor in self.motors_legs:
            motor.setPosition(-np.pi / 2)

        # Iteration counter
        self.iteration = 0

        # Logging
        self.log = ExperimentLogger(n_iterations,
                                    n_links=1,
                                    n_joints=self.N_BODY_JOINTS,
                                    filename=kwargs.pop(
                                        "logs", "logs/log.npz"),
                                    timestep=1e-3 * timestep,
                                    freqs=freqs,
                                    amplitude=amplitudes,
                                    phase_lag=phase_lag,
                                    turn=turn)
    def __init__(self, robot, n_iterations, parameters, logs="logs/log.npz"):
        super(SalamanderCMC, self).__init__()
        self.robot = robot
        timestep = int(robot.getBasicTimeStep())
        self.network = SalamanderNetwork(1e-3*timestep, parameters)

        # Position sensors
        self.position_sensors = [
            self.robot.getPositionSensor('position_sensor_{}'.format(i+1))
            for i in range(self.N_BODY_JOINTS)
        ] + [
            self.robot.getPositionSensor('position_sensor_leg_{}'.format(i+1))
            for i in range(self.N_LEGS)
        ]
        for sensor in self.position_sensors:
            sensor.enable(timestep)

        # GPS
        self.enable = False
        self.gps = robot.getGPS("fgirdle_gps")
        self.gps.enable(timestep)

        # Get motors
        self.motors_body = [
            self.robot.getMotor("motor_{}".format(i+1))
            for i in range(self.N_BODY_JOINTS)
        ]
        self.motors_legs = [
            self.robot.getMotor("motor_leg_{}".format(i+1))
            for i in range(self.N_LEGS)
        ]

        # Set motors
        for motor in self.motors_body:
            motor.setPosition(0)
            motor.enableForceFeedback(timestep)
            motor.enableTorqueFeedback(timestep)
        for motor in self.motors_legs:
            motor.setPosition(-np.pi/2)
            motor.enableForceFeedback(timestep)
            motor.enableTorqueFeedback(timestep)

        # Iteration counter
        self.iteration = 0

        # Logging
        self.log = ExperimentLogger(
            n_iterations,
            n_links=1,
            n_joints=self.N_BODY_JOINTS+self.N_LEGS,
            filename=logs,
            timestep=1e-3*timestep,
            **parameters
        )
Example #5
0
def run_network(duration, update=False, drive=0):
    """Run network without Webots and plot results"""
    # Simulation setup
    timestep = 5e-3
    times = np.arange(0, duration, timestep)
    n_iterations = len(times)
    parameters = SimulationParameters()
    network = SalamanderNetwork(timestep, parameters)
    osc_left = np.arange(10)
    osc_right = np.arange(10, 20)
    osc_legs = np.arange(20, 24)

    # Logs
    phases_log = np.zeros([n_iterations, len(network.state.phases)])
    phases_log[0, :] = network.state.phases
    amplitudes_log = np.zeros([n_iterations, len(network.state.amplitudes)])
    amplitudes_log[0, :] = network.state.amplitudes
    freqs_log = np.zeros([n_iterations, len(network.parameters.freqs)])
    freqs_log[0, :] = network.parameters.freqs
    outputs_log = np.zeros(
        [n_iterations, len(network.get_motor_position_output())])
    outputs_log[0, :] = network.get_motor_position_output()

    # Run network ODE and log data
    tic = time.time()
    for i, _ in enumerate(times[1:]):
        if update:
            network.parameters.update(
                SimulationParameters(
                    # amplitude_gradient=None,
                    # phase_lag=None
                ))
        network.step()
        phases_log[i + 1, :] = network.state.phases
        amplitudes_log[i + 1, :] = network.state.amplitudes
        outputs_log[i + 1, :] = network.get_motor_position_output()
        freqs_log[i + 1, :] = network.parameters.freqs
    toc = time.time()

    # Network performance
    pylog.info("Time to run simulation for {} steps: {} [s]".format(
        n_iterations, toc - tic))

    # Implement plots of network results
    #pylog.warning("Implement plots")
    # body joint angles
    #plot_positions(times, outputs_log[:,:10])

    # limb joint angles
    plot_positions(times, outputs_log[:, 10:])
def main(plot=True):
    """Main - Run network without Webots and plot results"""
    # Simulation setup
    timestep = 1e-3
    times = np.arange(0, 2, timestep)
    freqs = np.ones(20)  # 20 amplitudes to be specified
    amplitudes = [1, 1]  #np.ones(20) #[1, 1] # 20 amplitudes to be specified
    phase_lag = 2 * np.pi / 10  # Single scalar
    turn = 0  # Will be used to modify set_parameters from AmplitudeEquation in network.py

    network = SalamanderNetwork(timestep, freqs, amplitudes, phase_lag, turn)

    # Logs
    phases_log = np.zeros([len(times), len(network.phase_equation.phases)])
    phases_log[0, :] = network.phase_equation.phases
    amplitudes_log = np.zeros(
        [len(times), len(network.amplitude_equation.amplitudes)])
    amplitudes_log[0, :] = network.amplitude_equation.amplitudes
    outputs_log = np.zeros(
        [len(times), len(network.get_motor_position_output())])
    outputs_log[0, :] = network.get_motor_position_output()

    # Simulation
    tic = time.time()
    for i, _ in enumerate(times[1:]):
        network.step()
        phases_log[i + 1, :] = network.phase_equation.phases
        amplitudes_log[i + 1, :] = network.amplitude_equation.amplitudes
        outputs_log[i + 1, :] = network.get_motor_position_output()
    toc = time.time()

    # Simulation information
    print("Time to run simulation for {} steps: {} [s]".format(
        len(times), toc - tic))

    plotLogData(times, phases_log, what='phase', figure_name='phases_log')
    plotLogData(times,
                amplitudes_log,
                what='amplitude',
                figure_name='amplitudes_log')
    plotLogData(times, outputs_log, what='output', figure_name='outputs_log')

    # Show plots
    if plot:
        plt.show()
    else:
        save_figures()
Example #7
0
def main(plot=True):
    """Main - Run network without Webots and plot results"""
    # Simulation setup
    timestep = 1e-3
    times = np.arange(0, 2, timestep)
    freqs = 1
    amplitudes = None
    phase_lag = None
    turn = None
    amplitudes = [1, 1]
    phase_lag = 2 * np.pi / (10 - 1)
    turn = 0
    network = SalamanderNetwork(timestep, freqs, amplitudes, phase_lag, turn)

    # Logs
    phases_log = np.zeros([len(times), len(network.phase_equation.phases)])
    phases_log[0, :] = network.phase_equation.phases
    amplitudes_log = np.zeros(
        [len(times), len(network.amplitude_equation.amplitudes)])
    amplitudes_log[0, :] = network.amplitude_equation.amplitudes
    outputs_log = np.zeros(
        [len(times), len(network.get_motor_position_output())])
    outputs_log[0, :] = network.get_motor_position_output()

    # Simulation
    tic = time.time()
    for i, _ in enumerate(times[1:]):
        network.step()
        phases_log[i + 1, :] = network.phase_equation.phases
        amplitudes_log[i + 1, :] = network.amplitude_equation.amplitudes
        outputs_log[i + 1, :] = network.get_motor_position_output()
    toc = time.time()

    # Simulation information
    print("Time to run simulation for {} steps: {} [s]".format(
        len(times), toc - tic))

    # Show plots
    if plot:
        plt.show()
    else:
        save_figures()
Example #8
0
def run_network(duration, update=False, drive=0):
    """Run network without Webots and plot results"""
    # Simulation setup
    timestep = 5e-3
    times = np.arange(0, duration, timestep)
    n_iterations = len(times)
    parameters = SimulationParameters(
        #drive=drive,
        amplitude_gradient=None,
        phase_lag=None,
        turn=None,
    )
    network = SalamanderNetwork(timestep, parameters)
    osc_left = np.arange(10)
    osc_right = np.arange(10, 20)
    osc_legs = np.arange(20, 24)

    cw = np.zeros([24, 24])
    for i in range(network.parameters.n_body_joints * 2):
        for j in range(network.parameters.n_body_joints * 2):
            if j == i + 1 or j == i - 1 or j == i + 10 or j == i - 10:
                cw[i][j] = 10

    cw[20][1:10] = 1
    cw[21][7:10] = 1
    cw[22][11:20] = 1
    cw[23][17:20] = 1
    for i in range(20, 24):
        for j in range(20, 24):
            if j == i + 1 or j == i - 1 or j == i + 2 or j == i - 2:
                cw[i][j] = 10

    network.parameters.freqs = 3 * np.ones(24)
    network.parameters.coupling_weights = cw
    network.parameters.nominal_amplitudes = 0.2 * np.ones(24)
    #network.parameters.nominal_amplitudes[0] = 1

    fb = np.zeros([24, 24])
    for i in range(network.parameters.n_body_joints * 2):
        for j in range(network.parameters.n_body_joints * 2):
            if j == i + 1:
                fb[i][j] = -2 * np.pi / 8
            elif j == i - 1:
                fb[i][j] = 2 * np.pi / 8
            elif j == i + 10 or j == i - 10:
                fb[i][j] = np.pi

    network.parameters.phase_bias = fb

    # Logs
    phases_log = np.zeros([n_iterations, len(network.state.phases)])
    phases_log[0, :] = network.state.phases
    amplitudes_log = np.zeros([n_iterations, len(network.state.amplitudes)])
    amplitudes_log[0, :] = network.state.amplitudes
    freqs_log = np.zeros([n_iterations, len(network.parameters.freqs)])
    freqs_log[0, :] = network.parameters.freqs
    outputs_log = np.zeros(
        [n_iterations, len(network.get_motor_position_output())])
    outputs_log[0, :] = network.get_motor_position_output()

    # Run network ODE and log data
    tic = time.time()
    for i, _ in enumerate(times[1:]):
        if update:
            network.parameters.update(
                SimulationParameters(
                    # amplitude_gradient=None,
                    # phase_lag=None
                ))
        network.step()
        phases_log[i + 1, :] = network.state.phases
        amplitudes_log[i + 1, :] = network.state.amplitudes
        outputs_log[i + 1, :] = network.get_motor_position_output()
        freqs_log[i + 1, :] = network.parameters.freqs
    toc = time.time()

    # Network performance
    pylog.info("Time to run simulation for {} steps: {} [s]".format(
        n_iterations, toc - tic))

    plt.figure('phases')
    plt.plot(phases_log)

    plt.figure('amplitude')
    plt.plot(amplitudes_log)

    plt.figure('frequency')
    plt.plot(freqs_log)

    plt.figure('out')
    plt.plot(outputs_log)
Example #9
0
def run_network(duration, update=False, drive=1., gait="Walking"):
    """Run network without Webots and plot results"""

    # Simulation setup
    timestep = 5e-3
    times = np.arange(0, duration, timestep)
    n_iterations = len(times)
    parameters = SimulationParameters(
        drive=drive,
        amplitude_gradient=None,
        phase_lag=None,
        turn=None,
    )

    network = SalamanderNetwork(timestep, parameters)

    # Logs
    phases_log = np.zeros([
        n_iterations,
        len(network.state.phases)
    ])
    phases_log[0, :] = network.state.phases
    amplitudes_log = np.zeros([
        n_iterations,
        len(network.state.amplitudes)
    ])
    amplitudes_log[0, :] = network.state.amplitudes
    freqs_log = np.zeros([
        n_iterations,
        len(network.parameters.freqs)
    ])
    freqs_log[0, :] = network.parameters.freqs
    outputs_log = np.zeros([
        n_iterations,
        len(network.get_motor_position_output())
    ])
    outputs_log[0, :] = network.get_motor_position_output()

    # Run network ODE and log data
    tic = time.time()
    for i, _ in enumerate(times[1:]):
        if update:
            network.parameters.update(
                SimulationParameters(
                    # amplitude_gradient=None,
                    # phase_lag=None
                )
            )
        network.step()
        phases_log[i+1, :] = network.state.phases
        amplitudes_log[i+1, :] = network.state.amplitudes
        outputs_log[i+1, :] = network.get_motor_position_output()
        freqs_log[i+1, :] = network.parameters.freqs
    toc = time.time()

    # Network performance
    pylog.info("Time to run simulation for {} steps: {} [s]".format(
        n_iterations,
        toc - tic
    ))

    # Result plots
    plt_res.plot_body_joints(times, outputs_log, f'exercise_9a_{gait}_body_joints', gait=gait)
    plt_res.plot_leg_joints(times, outputs_log, f'exercise_9a_{gait}_leg_joints')
Example #10
0
def run_network(duration, update=False, drive=4):
    """Run network without Webots and plot results"""
    # Simulation setup
    timestep = 5e-3
    times = np.arange(0, duration, timestep)
    n_iterations = len(times)
    parameters = SimulationParameters(
        drive=drive,
        amplitude_gradient=None,
        turn=None,
    )
    network = SalamanderNetwork(timestep, parameters)
    osc_left = np.arange(10)
    osc_right = np.arange(10, 20)
    osc_legs = np.arange(20, 24)

    # Logs
    phases_log = np.zeros([
        n_iterations,
        len(network.state.phases)
    ])
    phases_log[0, :] = network.state.phases
    amplitudes_log = np.zeros([
        n_iterations,
        len(network.state.amplitudes)
    ])
    amplitudes_log[0, :] = network.state.amplitudes
    freqs_log = np.zeros([
        n_iterations,
        len(network.parameters.freqs)
    ])
    freqs_log[0, :] = network.parameters.freqs
    outputs_log = np.zeros([
        n_iterations,
        len(network.get_motor_position_output())
    ])
    outputs_log[0, :] = network.get_motor_position_output()

    # Run network ODE and log data
    tic = time.time()
    for i, _ in enumerate(times[1:]):
        if update:
            network.parameters.update(
                SimulationParameters(
                    # amplitude_gradient=None,
                    # phase_lag=None
                )
            )
        network.step()
        phases_log[i+1, :] = network.state.phases
        amplitudes_log[i+1, :] = network.state.amplitudes
        outputs_log[i+1, :] = network.get_motor_position_output()
        freqs_log[i+1, :] = network.parameters.freqs
    toc = time.time()

    # Network performance
    pylog.info("Time to run simulation for {} steps: {} [s]".format(
        n_iterations,
        toc - tic
    ))

    # Implement plots of network results
    print(np.shape(outputs_log),n_iterations)
    plot_positions(times,outputs_log[:,0:10],["q1","q2","q3","q4","q5","q6","q7","q8","q9","q10"],drive)
def run_network(duration, update=False, drive=0):
    """Run network without Webots and plot results"""
    # Simulation setup
    timestep = 5e-3
    times = np.arange(0, duration, timestep)
    n_iterations = len(times)
    parameters = SimulationParameters(
        drive=2.5,
        amplitude=[0.1, 0.1],  # head, tail 
        phase_lag=2 * np.pi / 8,
        turn=None,
        couplingBody=10,
        couplingLeg=30,
        rate=20,
        limb_spine_phase_lag=1)
    network = SalamanderNetwork(timestep, parameters)
    osc_left = np.arange(10)
    osc_right = np.arange(10, 20)
    osc_legs = np.arange(20, 24)

    # Logs
    phases_log = np.zeros([n_iterations, len(network.state.phases)])
    phases_log[0, :] = network.state.phases
    amplitudes_log = np.zeros([n_iterations, len(network.state.amplitudes)])
    amplitudes_log[0, :] = network.state.amplitudes
    freqs_log = np.zeros([n_iterations, len(network.parameters.freqs)])
    freqs_log[0, :] = network.parameters.freqs
    outputs_log = np.zeros(
        [n_iterations, len(network.get_motor_position_output())])
    outputs_log[0, :] = network.get_motor_position_output()

    # Run network ODE and log data
    tic = time.time()
    for i, _ in enumerate(times[1:]):
        if update:
            network.parameters.update(
                SimulationParameters(
                    # amplitude_gradient=None,
                    # phase_lag=None
                ))
        network.step()
        phases_log[i + 1, :] = network.state.phases
        amplitudes_log[i + 1, :] = network.state.amplitudes
        outputs_log[i + 1, :] = network.get_motor_position_output()
        freqs_log[i + 1, :] = network.parameters.freqs
    toc = time.time()

    # Network performance
    pylog.info("Time to run simulation for {} steps: {} [s]".format(
        n_iterations, toc - tic))

    # Implement plots of network results
    #pylog.warning("Implement plots")
    plotLogData(times, phases_log, what='phase', figure_name='phase log')
    plotLogData(times,
                amplitudes_log,
                what='amplitude',
                figure_name='amplitude log')
    plotLogData(times,
                outputs_log[:, 0:14],
                what='output',
                figure_name='output log')